

Lecture Notes in Computer Science 3028
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Daniel Neuenschwander

Probabilistic and
Statistical Methods
in Cryptology

An Introduction by Selected Topics

1 3

Author

Daniel Neuenschwander
Universities of Bern and Lausanne (Switzerland) and
Swiss Ministry of Defense
Section of Cryptology
3003 Bern, Switzerland
E-mail: daniel.neuenschwander@bluewin.ch

Library of Congress Control Number: 2004105111

CR Subject Classification (1998): E.3, G.3

ISSN 0302-9743
ISBN 3-540-22001-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

c© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10998649 06/3142 5 4 3 2 1 0

To Galina

Preface

Cryptology is nowadays one of the most important subjects of applied mathe-
matics. Not only the task of keeping information secret is important, but also
the problems of integrity and of authenticity, i.e., one wants to avoid that an
adversary can change the message into a fraudulent one without the receiver
noticing it, and on the other hand the receiver of a message should be able
to be sure that the latter has really been sent by the authorized person (elec-
tronic signature). A big impetus on modern cryptology was the invention of
so-called public-key cryptosystems in the 1970’s by Diffie, Hellman, Rivest,
Shamir, Adleman, and others. In particular in this context, deep methods
from number theory and algebra began to play a decisive role. This aspect of
cryptology is explained in, for example, the monograph “Algebraic Aspects
of Cryptography” by Koblitz (1999). The goal of these notes was to write a
treatment focusing rather on the stochastic (i.e., probabilistic and statistical)
aspects of cryptology. As this direction also consists of a huge literature, only
some glimpses can be given, and by no means are we always at the frontier
of the current research. The book is rather intended as an invitation for stu-
dents, researchers, and practitioners to study certain subjects further. We
have tried to be as self-contained as reasonably possible, however we suppose
that the reader is familiar with some fundamental notions of probability and
statistics. It is our hope that we have been able to communicate the fascina-
tion of the subject and we would be delighted if the book encouraged further
theoretical and practical research.
Let me give my gratitude to my colleagues in the Cryptology Section in the
Ministry of Defense of Switzerland for the excellent and stimulating work-
ing atmosphere. Many thanks are also due to Werner Schindler from the
German “Bundesamt für Sicherheit in der Informationstechnik” for helpful
discussions. Furthermore, I am indebted to Springer-Verlag, Heidelberg for
the agreeable cooperation. However, the most important thanks goes to my
wife Galina for her constant moral support of my scientific activities. Without
her asking “How is your book?” from time to time, the latter would certainly
not yet be finished!

Bern, February 2004 Daniel Neuenschwander

Contents

Introduction . 1

1 Classical Polyalphabetic Substitution Ciphers 9
1.1 The Vigenère Cipher . 9
1.2 The One Time Pad, Perfect Secrecy, and Cascade Ciphers . . . 12

2 RSA and Probabilistic Prime Number Tests 17
2.1 General Considerations and the RSA System 17
2.2 The Solovay-Strassen Test . 19
2.3 Rabin’s Test . 22
2.4 *Bit Security of RSA . 25
2.5 The Timing Attack on RSA . 33
2.6 *Zero-Knowledge Proof for the RSA Secret Key 34

3 Factorization withQuantum Computers: Shor’s Algorithm . 37
3.1 Classical Factorization Algorithms . 37
3.2 Quantum Computing . 38
3.3 Continued Fractions . 40
3.4 The Algorithm . 43

4 Physical Random-Number Generators . 47
4.1 Generalities . 47
4.2 Construction of Uniformly Distributed Random Numbers

from a Poisson Process . 48
4.3 *The Extraction Rate for Biased Random Bits 52

5 Pseudo-random Number Generators . 57
5.1 Linear Feedback Shift Registers . 57
5.2 The Shrinking and Self-shrinking Generators 62
5.3 Perfect Pseudo-randomness . 65
5.4 Local Statistics and de Bruijn Shift Registers 68
5.5 Correlation Immunity . 69
5.6 The Quadratic Congruential Generator . 72

X Contents

6 An Information Theory Primer . 77
6.1 Entropy and Coding . 77
6.2 Relative Entropy, Mutual Information, and Impersonation

Attack . 80
6.3 *Marginal Guesswork . 86

7 Tests for (Pseudo-)Random Number Generators 89
7.1 The Frequency Test and Generalized Serial Test 89
7.2 Maximum Absolute Value of Random Walk Test 91
7.3 Number of Visits of Random Walk Test 92
7.4 Run Tests . 93
7.5 Tests on Frequencies of Patterns . 95
7.6 Tests Based on Missing Words . 95
7.7 Approximate Entropy Test . 97
7.8 The Ziv-Lempel Complexity Test . 98
7.9 Maurer’s “Universal Test” . 99
7.10 Rank of Random Matrices Test . 100
7.11 Linear Complexity Test . 101

8 Diffie-Hellman Key Exchange . 107
8.1 The Diffie-Hellman System . 107
8.2 Distribution of Diffie-Hellman Keys . 107
8.3 Strong Primes . 112

9 Differential Cryptanalysis . 115
9.1 The Principle . 115
9.2 The Distribution of Characteristics . 119

10 Semantic Security . 125

11 *Algorithmic Complexity . 135

12 Birthday Paradox and Meet-in-the-Middle Attack 139
12.1 The Classical Birthday Attack . 139
12.2 The Generalized Birthday Problem and Its Limit

Distribution . 140
12.3 The Meet-in-the-Middle Attack . 143

13 Quantum Cryptography . 145

Bibliographical Remarks . 147

References . 151

Index . 157

Introduction

Background

Cryptology is nowadays considered as one of the most important fields of
applied mathematics. Also, aspects from physics and, of course, engineering
science play important roles. Classical cryptology consisted almost entirely
of the problem of secret keeping. The so-called “Caesar shift code” was just
a shift of the alphabet by a certain number of places, e.g., 3 places (then the
plaintextletter “a” was encrypted by the ciphertextletter “D”, “b” by “E”,
etc., “w” by “Z”, and then “x” by “A”, “y” by “B”, “z” by “C”). Such a shift
code is, of course, trivial to decrypt1, because one needs to try only 25 pos-
sibilities with some groups of subsequent ciphertextletters until one obtains
some meaningful plaintext. More general are monoalphabetic substitutions,
which are just any permutation of the alphabet. Here, one has 26!−1 ≈ 4·1026

possibilities, but as the same plaintextletter always corresponds to the same
ciphertextletter and vice versa, frequent letters (or pairs/triples of letters) in
the ciphertext will with great probability correspond to frequently occurring
letters (pairs/triples) in the language in which the plaintext is written, for
example the letter “e” in German. For example, the following features of Ger-
man language support the decryption of monoalphabetic encryptions: If in
the ciphertext a triple of consecutive letters occurs several times, then there is
a good chance that it corresponds to the plaintext triple “sch”; the plaintext
letter “c” is almost always succeeded by “h” or “k”, “q” by “u” with hardly
any exceptions. In any language (and also with more general cryptosystems)
the encryptor should avoid the use of “mots probables” (words from which
an adversary can conjecture that they appear in the plaintext, e.g., military
terms, “Heil Hitler”, etc.). During the Second World War, this danger was
often neglected, a mistake that was not the most important, but one of sev-
eral reasons why enemy codes were decrypted in a decisive measure at that
time. In recent years, many documents have been (and still are) found by
historians in archives which confirm this fact. In the year 1586, the French
diplomat Blaise de Vigenère (1523-1596) found a polyalphabetic code that

1 In all our subsequent text, the word “decipher” will mean the decoding of a
ciphertext by its legitimate receiver, whereas “decrypt” will mean the breaking
of the code by an adversary.

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 1-7, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Introduction

was thought to be “unbreakable” for centuries. This code will be presented
in Section 1.1 of our text, together with the attacks on it found not earlier
than in the second half of the 19th and at the beginning of the 20th century.
After the spectacular successes in decrypting rotor enciphering machines such
as ENIGMA, etc., during the Second World War, in the second half of the
1970s a great impetus on the development of modern cryptology was given
by the invention of so-called public-key cryptosystems, in particular the code
that is now known under the name “RSA system” (named after the au-
thors who published it, namely “R” for Rivest, “S” for Shamir, and “A” for
Adleman). Its detailed working is described in Section 2.1. The only non-
trivial ingredient is Fermat’s Little Theorem, which was known as a piece
of “pure” number theory long before. It turned out since then that number
theory and algebra are of decisive importance in modern cryptology, both in
cryptography and cryptanalysis, in contrast to the assertion of the English
mathematician G. Hardy (1877-1947) that by analyzing primes one “can not
win wars”!
Nowadays, not only (classical) algebra and number theory, but also many
other fields of mathematics, such as highly advanced topics of algebra and
number theory (such as, for example, modern algebraic geometry, elliptic
curves), graph theory, finite geometry (see, for example, Walther (1999)),
probability, statistics, etc., play a role in cryptography, not to mention the re-
cent (at least theoretical) developments in quantum computing and quantum
cryptography (based on quantum mechanics) and all questions on hardware
implementation of cryptosystems.
Furthermore, other goals entered into cryptology, namely the task of securiza-
tion of the integrity and authenticity of a message. This means that (even for
a possibly open transmission channel) one wants to avoid the message being
changed by some unauthorized person without the receiver noticing it, and,
on the other hand, the receiver wants to be sure that really the authorized
person was the sender of the message (electronic signature). (In this context,
we also mention the (however, already old) concept of steganography, where
even the mere fact that a message has been transmitted (not only its con-
tents) is to be kept secret. We will not discuss this subject further.) On the
other hand, generalizations to multiparty systems also emerged. Nowadays,
network security is a very important problem in practice.
A systematic introduction to the algebraic and number theoretic aspects was
given in the Koblitz (1999) book “Algebraic Aspects of Cryptography”. The
goal of our text will be to give a similar insight into some probabilistic and
statistical methods (in its broadest sense, so, for example, also using quan-
tum stochastics) of cryptology. By no means do we claim completeness, only
some introductions to certain topics can be given. Important areas, such as for
example secret sharing, multi-party systems, zero-knowledge, problems on in-
formation transmission channels, linear cryptanalysis, digital fingerprinting,
visual cryptography (see, for example, de Bonis, de Santis (2001)), etc., had to

Introduction 3

be (almost) entirely excluded. For further reading, we recommend that read-
ers consult, in particular, the Journal of Cryptology and the various confer-
ence proceedings series, e.g., in the Springer Lecture Notes in Computer Sci-
ence (EUROCRYPT, CRYPTO, ASIACRYPT, AUSCRYPT, INDOCRYPT,
FAST SOFTWARE ENCRYPTION, etc.). What is also of interest are the
journals Designs, Codes, and Cryptography, and IEEE Transactions on In-
formation Theory, together with several “computational” periodicals. Some-
times, very important information can also be found in mathematical and
stochastic journals/books, though this is rather the exception compared to
the specific series devoted more to what is nowadays called “Theoretical Com-
puter Science”.

Book Structure

Let us now give a short description of the contents of the present book.
As already mentioned, in Section 1.1 we present the famous classical Vigenère
system, which for a long time was believed to be as “secure as possible”. Of
course, no cryptosystem is absolutely secure in the literal sense of the word,
since there is always the possibility of exhaustive search (in many cases, even
though no better attack is known, however, also no proof that no better attack
exists is available up to now). (Somewhat exceptional is quantum cryptogra-
phy as it is briefly described in Chapter 13. But this is research in progress.)
So actually the mere reasonable definition of “security” of a cryptosystem
is a non-trivial task. In Section 1.2 we speak about the most natural (but
expensive to realize) notion of “perfect secrecy”, whereas other security con-
cepts (weaker, but often more easily implementable and testable ones) are
discussed in Sections 5.1 (Golomb’s conditions, PN-sequences), 5.3 (“perfect
pseudo-randomness”, which means that a source cannot “efficiently” be dis-
tinguished from a truly random source), 5.4 ((“almost”) ideal local statistics),
Chapter 10 (“semantic security”, which is a “polynomially bounded” version
of perfect secrecy in the sense that one assumes that the adversary has only
“polynomial” computational resources), and Chapter 11 (“algorithmic com-
plexity”). Of course, theoretically quite weak but in practice not unimportant
is the requirement for maximal linear complexity (see Sections 5.1 and 7.11),
if one confines oneself to linear feedback shift registers. A short remark fol-
lows about a misleading “intuitive” idea concerning cascade ciphers, against
which Massey and Maurer (1993) warned in their paper “Cascade Ciphers:
The Importance of Being First”.
Chapter 2 is devoted to public-key ciphers, in particular to the RSA system.
After the introduction of the RSA system, whose basis is the (probably true
and therefore generally supposed) computational difficulty of factoring large
integers, we present two of the best-known probabilistic primality tests (the
Soloway-Strassen test, which, loosely speaking, tests Euler’s criterion for the
Legendre-Jacobi symbol, and the Rabin test, which is related to Fermat’s

4 Introduction

Little Theorem for residue rings modulo a prime). A specially designed prob-
abilistic prime number test for numbers congruent 3 (mod.4) (i.e., candidates
for prime factors of so-called Blum integers) has been presented by Müller
(2003). In Section 2.4 we prove that in the RSA system, one has a “hard”
least significant bit, which means that if ever one finds a probabilistic poly-
nomial time algorithm for calculating the least significant bit of the plaintext
from the public key and the ciphertext, then there exists also a probabilis-
tic polynomial-time algorithm for reconstructing the whole plaintext from
these data. “Hard bits” have been the subject of much subsequent literature.
Another public-key algorithm, the Diffie-Hellman system, will be discussed
in Chapter 8. Section 2.5 warns against careless hardware implementation,
so that certain internal parameters (e.g., processing time) can be measured
by the adversary, and advises on avoiding such attacks. For further reading
about the subject of “timing attacks”, we also refer to Schindler (2002a). In
Section 2.6 we show how somebody can persuade his/her friend that he/she
has found an RSA-secret key of somebody else without revealing any infor-
mation about it, thus giving a first glimpse into the field of zero-knowledge
proofs.
Chapter 3 presents Shor’s algorithm (for whose invention Shor got the Nevan-
linna prize) for factoring numbers with quantum computers. One must admit
that up to now, quantum computers have been rather a theoretical concept
and not yet producible in a usable way. The latest news about hardware re-
search in this direction is rather pessimistic. Of course, from the viewpoint of
users of classical cryptological devices this is reassuring, for if an adversary
were really in possession of a quantum computer working on a large scale,
then virtually all cryptosystems whose security is based on the “intractabil-
ity” of the problem of factorizing numbers or the discrete logarithm problem
would be breakable in “no” time (more precisely: in linear time, where up
to now only behavior (e.g., for the quadratic or the number field sieve) of
an order little better than exponential is known). We do not assume that
the reader has any preliminary knowledge of quantum theory. All necessary
explanations are given in Section 3.2. Shor’s algorithm makes use of a result
from the theory of continued fractions, which we will present in Section 3.3.
Almost all cryptosystems work with keys, which, as a doctrine (at least in
theoretical cryptology), is the only information on the cryptosystem that is
assumed to (and can realistically) be kept secret. That is, one always as-
sumes, in order to be on the safe side, that the adversary is in possession of
the device that has been used for encryption/deciphering, but he has virtu-
ally no information about the key. The most secure way to provide a good key
is to generate it with a genuine, physical generator, e.g., radioactive sources
with Geiger counters or electronic noise produced by a semiconducting diode
(see Chapter 4). For general use, for example, HOT BITS is a source of ran-
dom bits stemming from beta radiation from the decay of krypton-85, and
is available on the Internet. However, physical devices are very slow com-

Introduction 5

pared to pseudo-random generators, which we will treat in Chapter 5. Some
considerations about possible constructions of good physical random number
generators, such as some discussions on their quality due to Zeuner and the
author, are the subject of Section 4.2. In Section 4.3 we address the general
problem of obtaining random bits that are as unbiased as possible, if the
disposable source only produces random bits with a certain bias. We will cal-
culate the “extraction rate” (which indicates in some sense the asymptotical
speed of the diminution of the bias per new random bit source, when the fi-
nal output bit is produced by adding (mod.2) independent biased random bit
sources) for rational biases. Interestingly enough, the extraction rate turns
out to be independent of the size of the bias b, but to be determined solely
by the arithmetic properties of b. However, one finds that the extraction rate
is 0 for Lebesgue-almost all biases b.
On the contrary, we speak about pseudo-random generators in the follow-
ing. In Chapter 5, we present some important examples (linear feedback
shift registers (Section 5.1) and combinations thereof (Section 5.5), non-linear
feedback shift registers (Section 5.4), shrinking and self-shrinking generators
(Section 5.2), and the quadratic congruential generator (Section 5.6)).
Chapter 6 is a brief introduction to the most important notions of infor-
mation theory as it is of use for us and to the aforementioned problem of
authenticity. Section 6.3 is a new unorthodox approach.
In Chapter 7 we give a collection of some of the best-known tests for pseudo-
random-number generators, orienting ourselves to a great extent at the tests
suggested by Rukhin (2000a,b) and the test-battery used for evaluation of
the AES. As is well-known, for a long time, the block cipher “data encryp-
tion standard” (DES) has been widely used, but, by using parallelism, it has
been possible to break it. Then the NIST (National Institute of Standards
and Technology) invited the worldwide cryptologic community to develop an
“advanced encryption standard” (AES). The winner of this contest was the
algorithm RIJNDAEL designed by Rijmen and Daemen.
Chapter 8 discusses the distribution of keys in the Diffie-Hellman public-key
system. In this context, the notion of “strong primes” (primes p that are of
the form p = 2q + 1 (where q is a prime)) is useful. Namely, it turns out
that if the modulus is a strong prime, then the entropy of the Diffie-Hellman
key is nearly the maximum possible, which means that it is recommendable
to use strong primes as moduli. Similar considerations about bit security as
we have in Section 2.4 apply for the Diffie-Hellman system, too. We refer to
González Vasco, Shparlinski (2001).
Chapter 9 describes an attack on block ciphers that has become very popu-
lar in recent years, namely differential cryptanalysis. Roughly speaking, here
the cryptanalyst makes use of cases where “differences/sums” (in the alge-
braic sense) of pairs of plaintexts leak through to differences/sums of the
corresponding pairs of ciphertexts. In an iterative r-round block cipher, with
this method it is sometimes possible to guess the r-th round subkey, then the

6 Introduction

(r−1)-th round subkey, etc., iteratively until the whole key is found. Interest-
ingly enough, although the theoretical results are generally proved under the
assumption that the round keys are chosen as i.i.d. (independent and iden-
tically distributed), in practice they are experimentally verified (sometimes
with even better behavior) if some key schedule algorithm is used. Section
9.2 generalizes distributional results for so-called characteristics (i.e., pairs
of differences of plaintext/ciphertext pairs of bitstrings) due to Hawkes and
O’Connor to residue rings of arbitrary modulus. Matsui (1994) developed
the related concept of linear cryptanalysis, which we have excluded from our
presentation.
In Chapter 10 we deal with semantic security. Roughly speaking, semantic
security is a polynomially bounded variant of perfect security, i.e., one as-
sumes that the adversary has only polynomially bounded resources.
A notion of “algorithmic complexity” (the so-called “Turing-Kolmogorov-
Chaitin complexity”, which is — roughly speaking — the length of the short-
est program that one must feed to a universal Turing machine to generate
as output a given bitstring) is considered in Chapter 11. However, this is of
rather theoretical interest, since the algorithmic complexity of a given bit-
string is not computable (in the sense of the Church Thesis). It turns out
that in the sense of the Haar measure, for almost all bitstrings the algo-
rithmic complexity is equal to the linear complexity, thus here we have a
somewhat similar situation as for the extraction rate of biases in Section 4.3.
At first glance this contradicts the fact that there are very simply constructed
bitsequences with maximal linear complexity (e.g., 00...01), but the above-
mentioned equivalence is not valid for “effectively constructible” sequences
(see the title of the paper of Beth and Dai (1990): “If you can describe a
sequence, it can’t be random.”).
Chapter 12 addresses the problem of collisions and the related “meet-in-the-
middle” attack, which has to do with the well-known birthday paradox from
probability theory.
Finally, we give a short glimpse into quantum cryptography in Chapter 13.
In this situation, the receiver of an encrypted message will immediately de-
tect (with arbitrarily large probability) if an adversary has manipulated the
message (maybe even only “measured” it in the quantum-mechanical sense),
which in general is of course not the case in classical cryptosystems. However,
here also, the technology has not yet been developed far enough. Note that
Chapter 13 deals with “genuine” quantum cryptography, whereas in Chapter
3 we showed how to solve a problem of classical cryptography by means of
quantum computing.
Finally, a word about giving proper credits should be said: In cryptology,
it is even more difficult than in other sciences to know to whom a certain
result should really be attributed, since often methods that have been pub-
lished later have already been developed (at least to a certain extent) before
by cryptologists who were not allowed to publish their findings, especially

Introduction 7

during the time of the Second World War and the Cold War. So, citations
of literature in our text should hardly be interpreted as a reference giving
a credit to a certain person or group of persons. For example, one sees few
Russian names occurring in the cryptological literature however, it turned
out that Soviet cryptanalysts have had important successes in, for example,
cryptanalysis, too.
In the body of this book, we give few formal citations, in order not to inter-
rupt the smoothness of the presentation too much. Instead, we have included
a section “Bibliographical Remarks” at the end of the text.
Chapters and sections with an asterisk treat more specific subjects and can
be omitted at first reading.

About Notation and Terminology

Throughout the book, the symbol IB will denote GF (2) = ZZ2, the field with
the two elements 0 and 1, which will be called “bits” (exception: Section 4.3).
Also, for a sequence x = (x1, x2, . . .), the symbol x(n) will mean the finite
subsequence consisting of the first n elements: x(n) = (x1, x2, . . . , xn). The
indicator function of the set B will be written as 1(B)(.).
“W.l.o.g.” means “without loss of generality”. The shorthands “i.i.d.” and
“a.s.” stand for the probabilistic notions “independent and identically dis-
tributed” and “almost surely” (i.e., “with probability one”). As already men-
tioned in the footnote at the beginning, the word “decipher” will mean the
decoding of a ciphertext by its legitimate receiver, whereas “decrypt” is the
breaking of the code by an adversary.

1 Classical Polyalphabetic Substitution

Ciphers

1.1 The Vigenère Cipher

The classical situation in cryptology, which we will consider below, is the
following: There are two parties, A (called ”Alice” in the jargon) and B (called
”Bob”). Alice would like to send a message to Bob by some channel. But
this channel is unsecure because in-between the two, there is some adversary
(”enemy”, eavesdropper) E (called ”Eve”) who either wants

– to listen in on the message sent from A to B and/or
– to send a message herself to B, asserting that this message comes from A

and/or
– to change a message indeed sent by A to B.

All these three attacks should be avoided. The first attack (listening in) con-
cerns the problem of secrecy (or confidentiality), the second that of authen-
ticity, and the third that of integrity. In other words, there are two inde-
pendent goals: To reach secrecy resp. authenticity/integrity, the output resp.
input of the channel from A to B should be exclusive. Of course, there are
more general cryptologic situations (multi-party models, secret sharing, zero-
knowledge, etc.). But these will not be considered here (except in the short
Section 2.6). Also the integrity/authenticity problem will only be addressed
in Sections 2.1 (electronic RSA signature) and 6.2 (impersonation attack),
and Chapter 12 (meet-in-the-middle attack). Apart from that, in this intro-
ductory text we will mainly be concerned with secret keeping.
In this chapter, we will present a classical cryptosystem, the so-called Vi-
genère cipher, invented in 1586 by the French diplomat Blaise de Vigenère
(1523-1596). It belongs to the class of polyalphabetic cryptosystems, which
means that the same letter of plaintext is not always encoded by the same
letter of ciphertext. This fact is of great importance in general. If a cryptosys-
tem is monoalphabetic, i.e. if every letter of plaintext is always encrypted by
the same letter of ciphertext, then statistical properties of the letters of the
language in which the plaintext is written automatically leak through to the
ciphertext, i.e. (for long enough messages) frequent letters (or m-grams) in
the ciphertext correspond to frequent letters (or m-grams) in the plaintext,
and by some statistical analysis it is, in general, not too difficult to find the

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 9-15, 2004.
© Springer-Verlag Berlin Heidelberg 2004

10 1 Classical Polyalphabetic Substitution Ciphers

plain-/ciphertext correspondence of frequent letters (m-grams) of the lan-
guage. To fill in the rest, often some ”trial and error” helps (in particular
with some additional information about ”mots probables” (words that are
likely to occur in the message)).
The Vigenère system is very simple and works as follows: Given a keyword,
e.g., ”PEACE” and the plaintext

OSAMABINLADEN,

then one writes the plaintext and the repeated keyword under each other and
”adds” the corresponding letters mod.26 (where A is interpreted as 0, B as
1, etc.) to obtain the ciphertext:

Plaintext O S A M A B I N L A D E N
Keyword P E A C E P E A C E P E A
Ciphertext D W A O E Q M N N E S I N

If Bob knows the key word, he can retrieve the plaintext from the ciphertext
simply by subtracting the corresponding letters of the keyword mod. 26. But
what cryptanalysis is concerned, one must say that although this system is
polyalphabetic as such, always after k places (if k is the length of the keyword)
the same substituting alphabet (which is even just a shift of the original
alphabet in the sense of its interpretation as elements of ZZ26) is used. This
gives rise to an algebraic method (the so-called Kasiski test) of determining
the keyword length up to multiples. Together with the stochastic Friedman
test, which yields the order of magnitude of the length of the keyword, one
can determine in most cases the actual length of the keyword. If this is known,
for every place modulo the length of the keyword, one must replace the letter
of the ciphertext that occurs most frequently by some very frequent letter
of the language in which the plaintext is written to determine the shift,
and then with little routine work one can then (in general) reconstruct the
plaintext thus. Let us describe the details: The Kasiski test is named after
the Prussian major Friedrich Wilhelm Kasiski (1805-1881), although it had
been found nine years before him (but had not been published) by Charles
Babbage (1792-1871) in 1854. It rests on the following observation: If a certain
word (for example a preposition or a conjunction, etc.) occurs several times
in the plaintext and if by chance (which is often quite large) the distance
between two such occurrences of the same word is a multiple of the length of
the keyword, then this word is encoded both times by the same sequence of
letters in the ciphertext. Or - spoken the other way round - if one detects the
same subsequences of letters (maybe even short ones, e.g., of length 3) several
times in the ciphertext, then the distance between them is quite probably a
multiple of the keyword length. Now the second part will be a little more

1.1 The Vigenère Cipher 11

involved, it is the so-called Friedman test, which was developed by William
Friedman in 1925. This is a test zhat is of stochastic nature. Consider a
plaintext of n letters, built from the Latin alphabet with the 26 characters
”A”, ”B”,. . .. Let n1 be the number of ”A”s, n2 the number of ”B”s, etc. in
the plaintext (hence n =

∑26
i=1 ni). Then the index of coincidence I is defined

as the probability that an arbitrary pair of letters taken from the plaintext
consists of the same 2 letters, i.e.

I =
∑26

i=1 ni(ni − 1)
n(n − 1)

.

If pi denotes the probability that on some fixed place (in a text of the con-
sidered language) letter i occurs, then (if the text is long enough) we have

I ≈
26∑

i=1

p2
i . (1.1)

The expression on the right-hand side of (1.1) decreases, if the distribution
of the letters in the language becomes more regular and takes its minimum
0.0385 if pi = 1/26 for all i ∈ {1, 2, . . . , 26}. The index of coincidence of
a natural language typically has about the double value (e.g. about 0.0667
for English). With a monoalphabetic substitution, the index of coincidence
remains unchanged whereas it decreases (in general) with a polyalphabetic
substitution. So a coincidence index of a polyalphabetic substitution tends
to be low (near 0.0385), whereas a significantly higher value suggests that
a monoalphabetic substitution method has been used. Now I (from the ci-
phertext) can be used to determine the approximate length of the keyword as
follows: Assume the keyword has length � (and, for simplicity, that n is w.l.o.g.
a multiple of �). Then write a ((n/�)× �)-matrix M where the letters number
k+ j� (j = 0, 1, 2, . . . , (n/�)−1) of the ciphertext form the k-th column. Now
if we take a (random) pair of letters in some fixed column, the probability
that both letters are equal is about (in practice a little more than) 0.0667,
since the individual columns have been encrypted monoalphabetically. The
number of pairs of two letters of the same column is given by n((n/�)− 1)/2.
If we take random pairs of letters of two different columns, the probability
of obtaining the same letter twice is about 0.0385 (if the keyword is ”long”
and ”random” enough). The number of pairs from two different columns is
n(n − (n/�))/(2�). Hence the probability p to have equal letters if one takes
a pair of two letters from the matrix M at random is about

p =
n(n−�)

2� · 0.0667 + n2(�−1)
2� · 0.0385

n(n − 1)/2

=
1

�/(n− 1)
(0.0282n + �(0.0385n− 0.0667)).

12 1 Classical Polyalphabetic Substitution Ciphers

Since this expression is an approximation for I from the ciphertext, we may
replace p by I from the ciphertext and by solving with respect to � we obtain
Friedman’s formula for the approximate keyword length �:

� =
0.0282n

(n − 1)I − 0.0385n + 0.0667
, (1.2)

where I is the empirical coincidence index of the ciphertext.

1.2 The One Time Pad, Perfect Secrecy, and Cascade
Ciphers

The method of attack described in the foregoing section becomes more and
more difficult if the keyword becomes longer and longer and is ”random
enough”. If, as a keyword, one takes a random string of the same length
as the plaintext itself, then the ciphertext becomes a random string, too,
and thus the system is theoretically (or ”perfectly”) secret (or ”secure”).
This system is called the One-Time Pad and was invented in 1917 by G. S.
Vernam (1890-1960) (that is why it is also called the ”Vernam cipher”). But
what is the practicability of it, if the key (which has also to be transferred
once from Alice to Bob) must have the same length as the plaintext? Do
we really gain something? The anwer is yes, for the key can be exchanged
at any time before the transmission of the message becomes necessary, e.g.
by some trustworthy courier. But it is important that any key is used only
once (and then destroyed), for if two messages x1x2 . . . xn and x′

1x
′
2 . . . x′

n

have been encrypted by the key z1z2 . . . zn to give the ciphertexts y1y2 . . . yn,
resp. y′

1y
′
2 . . . y′

n, then yi + y′
i = xi + x′

i. So immediately the sum of the two
plaintexts is already known, which reveals a lot of information!
Let us discuss the notion of perfect secrecy in some more detail.

Definition 1.1. A cryptosystem is said to have perfect secrecy if for all plain-
texts X and all ciphertexts Y , we have

P (X |Y) = P (X).

Generally, perfectly secret cryptosystems can be characterized as follows:

Theorem 1.1. Assume P (X) > 0 for any plaintext X and assume that the
key space has the same size as the space of possible ciphertexts. Then a cryp-
tosystem has perfect secrecy iff the distribution over the key space is uniform
and if for any plaintext X and any ciphertext Y there is exactly one key Z
that encrypts X to Y .

Proof: 1. We first prove the ”only if”-direction. Let X denote a plaintext
and assume there is a ciphertext Y such that there is no key Z that encrypts
X to Y . Then

1.2 The One Time Pad, Perfect Secrecy, and Cascade Ciphers 13

P (X |Y) = 0 < P (X),

which contradicts the definition of perfect secrecy, so at least one key Z
encrypting X to Y must exist. But since by the assumption there are exactly
as many keys as ciphertexts, Z must be unique. It remains to prove the
uniformity of the distribution of the keys. Denote by Z(X) the key that
encrypts the plaintext X to the ciphertext Y . By Bayes’ rule, we have

P (X |Y) =
P (Y |X)P (X)

P (Y)
=

P (Z(X))P (X)
P (Y)

. (1.3)

By perfect secrecy, P (X |Y) = P (X), so that (1.3) implies P (Z(X)) = P (Y).
So P (Z(X)) is the same for any plaintext X , and uniformity follows from the
fact that any key Z has the property Z = Z(X) for some plaintext X .
2. Now we pass to the ”if”-part. For all X, Y there is exactly one key Z =
Z(X, Y) that encrypts X to Y . Again by Bayes’rule (as in (1.3))

P (X |Y) =
P (X)P (Y |X)

P (Y)

=
P (X)P (Z(X, Y))∑

X′ P (X ′)P (Z(X ′, Y))
(1.4)

(where the sum in the denominator runs over all plaintexts X ′) and the
fact that all P (Z(X, Y)) are equal, we obtain that the denominator in (1.4)
is equal to the reciprocal value of the size of the key space and hence
P (X |Y) = P (X). �

A notion related to perfect secrecy is semantic security, which will be treated
in more detail in Chapter 10. The effect of perfect secrecy is that the adver-
sary, even if he has unlimited computer resources, can gain no information
about the plaintext from the ciphertext, except its length if this is not a
known parameter (see Theorem 10.1). The disadvantage of the requirement
of perfect secrecy is that the key must be at least as long as the plaintext.
Roughly speaking, semantic security is a polynomially bounded variant of
perfect secrecy, i.e. one assumes that the adversary has only polynomially
bounded computer resources.
A word about cascade ciphers: A cascade cipher is a sequence of component
ciphers Ci (i = 1, 2, . . . , r), where the output of Yi of cipher Ci is used as
input Xi+1 for cipher Ci+1. In every component cipher, a key Zi is used:

Yi = Ci(Xi, Zi) = Ci(Yi−1, Zi)

It is assumed that the keys Z1, Z2, . . . , Zr are statistically independent (oth-
erwise one speaks of a product cipher). So the input X for the whole cascade
cipher is X = X1, whereas the output is Y = Yr. Now one is tempted to
believe that a cascade cipher is at least as hard to break as its hardest com-
ponent. But as Massey and Maurer (1993) have shown, this is only true for

14 1 Classical Polyalphabetic Substitution Ciphers

”pure” known-plaintext, chosen-plaintext, and chosen-ciphertext attacks in
which Eve can not make use of information about the statistics of the plain-
text. As soon as the statistics of the plaintext is known, a cascade cipher
can possibly be easier to break than its hardest component, as the following
counterexample shows: Let C1, C2 be two block ciphers with input/output
alphabet consisting of the 4 letters A,B,C,D. Assume that the keys Z1 and Z2

are independent unbiased random bits. The component ciphers Ci transform
the alphabet as follows (by a little free use of notation):

C1((A, B, C, D), 0) := (C, D, A, B),

C1((A, B, C, D), 1) := (C, D, B, A),

C2((A, B, C, D), 0) := (C, D, A, B),

C2((A, B, C, D), 1) := (D, C, A, B).

Now we assume that for the plaintext statistics we have P (C) = P (D) = 0.
Then C1 is completely insecure for this plaintext source, but C2 is perfectly
secret since the plaintext and the ciphertext are statistically independent.
But on the other hand, the cascade cipher C2 ◦ C1 is completely insecure,
since it is just the identity transformation on {A, B}! What one can only
prove is that a cascade cipher is at least as secure as the first component
cipher C1 (see Massey, Maurer (1993). ”Cascade ciphers: The importance of
being first”). If C1 = C2 = . . . = Cr, then of course (since the components
commute), the iteration cipher is at least as secure as the component ciphers
themselves. This setup will be considered in more detail in Chapter 9.

Theorem 1.2. A cascade of n ciphers is at least as difficult to break as the
first component.

Proof: Consider an oracle that gives, upon request, the keys of all compo-
nent ciphers in the cascade except the key of the first component. Breaking
the cascade with the oracle’s help can not be more difficult than breaking it
without this help because the oracle’s information can always be disregarded.
However, breaking the cascade with the oracle’s help is equivalent to breaking
the first component cipher with the oracle’s help because on the one hand
every cryptogram of the cascade can with assumed negligible computation be
converted into the corresponding cryptogram for the first component cipher
and vice versa, and on the other hand the plaintexts of the first component
cipher and the cascade are the same. However, since the information pro-
vided by the oracle is statistically independent of the first key, it follows that
breaking only the first component cipher with the oracle’s help is equiva-
lent to breaking this first component without the oracle’s help. Or - in other
words - it follows from the fact that if the cryptanalyst (Eve) attacking the
first component cipher wishes to embed that component cipher in an artifi-
cial cascade in which she herself chooses the second and all subsequent keys
(independently of the first key by assumption) so as to avail herself of the

1.2 The One Time Pad, Perfect Secrecy, and Cascade Ciphers 15

oracle’s aid, then she already possesses all the information that the oracle
can provide. So breaking the first component cipher can not be more difficult
than breaking the whole cascade cipher. �.

2 RSA and Probabilistic Prime Number Tests

2.1 General Considerations and the RSA System

The RSA cryptosystem (named after R. Rivest, A. Shamir, and L. Adleman,
who published it in the 1970s) is one of the best-known so-called public
key cryptosystems. The idea is the following: Every participant chooses two
different big primes p and q ”at random” and calculates their product n = pq.
Then he chooses some arbitrary natural number e that is relatively prime to
the Euler totient function ϕ(n) (which denotes the number of relative primes
to n that are smaller than n or - in other words - the number of invertible
elements mod.n). In our situation, we have ϕ(n) = (p − 1)(q − 1). So for
e one can take, e.g., any prime larger than (p − 1)(q − 1) or, what makes
the decoding and encryption in the binary system especially simple, the 4th
Fermat Number F4 := 224

+ 1 = 65′537 (= 1′0000′0000′0000′0001 in the
binary system). The pair (n, e) is the so-called public key of the participant,
which he publishes and will be known to everybody. As his secret key, he
keeps the solution d < ϕ(n) of the equation

ed = 1(mod.(p − 1)(q − 1)). (2.1)

This solution can be found rapidly by the Euclidean algorithm if p and q are
known. But factorizing numbers n seems to be computationally hard in the
sense that there seems to exist no algorithm that is faster than exhaustive
search. Moreover, there is no known algorithm to solve (2.1) faster than by
finding p and q. But the actual equivalence has not been proved up to now.
See also Boneh, Venkatesan (1998). There are similar systems (however, with
other disadvantages) where breaking the system is provably equivalent to
finding the secret key, for example the Rabin system (Kranakis (1986)) or
the Williams (1980) algorithm. For convenience, we will now write (nA, eA)
and (nB, eB) for the public key of Alice and Bob resp., and dA and dB for
their respective secret keys. Assume Alice wants to send a message x (w.l.o.g.
in the form of a natural number mod.nB) to Bob. For that, she calculates
the ciphertext y (which will also be a natural number mod.nB) by

y := xeB (mod.nB) (2.2)

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 17-35, 2004.
© Springer-Verlag Berlin Heidelberg 2004

18 2 RSA and Probabilistic Prime Number Tests

and sends this to Bob. Bob will make the decoding

x = ydB(mod.nB) (2.3)

(which follows from (2.2) by (2.1) and Fermat’s Little Theorem). So the RSA
system seems to ensure confidentiality. The system can also be used to ensure
authenticity: For that, Alice sends, in addition to the encrypted message x,
her ”electronic signature” m, encrypted by

u := mdA(mod.nA), (2.4)

to Bob. Finding dA from u is the so-called discrete logarithm problem, which
is also believed to be hard. So by signing, Alice does not reveal her private
key dA. Since dA is only known to Alice, she alone can have produced u, so u
has really the role of a ”signature”. On the other hand, Bob can verify that
this is really Alice’s signature by checking if

ueA
?= m(mod.nA). (2.5)

A probabilistic (or so-called Monte Carlo) primality test is an algorithm
AP (n) that, for the input n, gives one of the two answers ”prime” or ”com-
posite” such that if it yields ”composite”, then n is composite and if it yields
”prime”, then n is indeed prime with high probability. It seems to be a gen-
eral fact in prime number testing that if in the case of the output ”prime” one
is satisfied that this answer is correct only up to some small error probability,
then the test runs much faster, or - in other words - what costs most effort
is to obtain absolute security in improbable cases. At least theoretically, a
major breakthrough has been achieved recently by Agrawal et al. (2003),
who gave an unconditional (i.e., not depending on any unproven assumption
as, e.g., the Extended Riemann Hypothesis (see Section 2.2) deterministic
polynomial-time algorithm to decide whether or not a number is prime (see
also Bornemann (2002), Bernstein (2002), and New York Times 8/8/2002).
In detail, for a probabilistic primality test one defines a so-called primality
sequence P = {Pn}n≥1 of sets of natural numbers with the following proper-
ties:
(i) Pn ⊂ ZZ∗

n (= group of integers mod.n relatively prime to n).
(ii) Given b ∈ ZZ∗

n one may check in time polynomial in the length of the
binary expansion of n if b ∈ Pn.
(iii) If n is prime, then Pn = ∅.
(Iv) There exists a so-called primality constant ε ∈]0, 1[(independent
of n) such that for all sufficiently large composite odd n ≥ 1 one has
P (x ∈ ZZ∗

n : x �∈ Pn) ≤ ε.
Now the test algorithm works as follows:

– Input: n ≥ 2.
– Choose an integer x ∈ ZZ∗

n at random.
– Output: AP (n) =”prime” if x �∈ Pn and AP (n) =”composite” if x ∈ Pn.

2.2 The Solovay-Strassen Test 19

If the test is run sufficiently many times (with independent values for x),
then the error probability can be made arbitrarily small:

P (AP (n) = ”prime”, although n is composite) ≤ εm.

2.2 The Solovay-Strassen Test

This test uses a well-known object from number theory, the so-called Leg-
endre-Jacobi symbol (x|n). If p is a prime and x ∈ ZZ∗

p , then the Legendre
symbol is defined as (x|p) = 1 if x is a quadratic residue modulo p and
(x|p) = −1 else. By Euler’s criterion (see, e.g., Kranakis (1986), Theorem
1.11), for all odd primes p one can calculate the Legendre symbol explicitly
as

(x|p) = x(p−1)/2(mod.p).

Now, for general n and x ∈ ZZ∗
n, one defines the Legendre-Jacobi symbol by

(x|n) =
t∏

i=1

(x|pi),

if n =
∏t

i=1 pi denotes the prime factorization of n.
Now the primality sequence of the Solovay-Strassen test is defined based on
Euler’s criterion:

Pn = {x ∈ ZZ∗
n : x(n−1)/2 �= (x|n)(mod.n)}.

From Euler’s criterion, conditions (i)-(iii) for primality sequences are fulfilled.
It remains to prove (iv). For this, we need some preparation.
Denote by νm(t) the largest k such that mk|t.
Lemma 2.1. Let n =

∏t
1=1 pki

i be the prime factorization of the odd integer
n (i.e., the pi are the different prime factors of n) and m ∈ IN . Put ν :=
min{ν2(pi − 1) : i = 1, 2, . . . , t} and s :=

∏t
i=1 gcd(m, ϕ(pki

i)). Then
(1) The equation xm = 1(mod.n) has exactly s solutions.
(2) There exists some x with xm = −1(mod.n) iff ν2(m) < min{ν2(pi−1) :
i = 1, 2, . . . , t}
(3) If the equation xm = −1(mod.n) has a solution, then it has exactly s
solutions.

Proof: Let (for a prime p and a generator g of ZZ∗
p) the shorthand indexp,g(x)

denote the unique m ≤ p − 2 such that x = gm(mod.p). For each i ∈
{1, 2, . . . , t}, let gi be a generator of ZZ∗

p
ki
i

. Taking indexes on both sides

of the equation xm = a(mod.n) one gets

m · indexpi,gi(x) = indexpi,gi(a)(mod.ϕ(pki

i)).

20 2 RSA and Probabilistic Prime Number Tests

Substituting a = 1 yields

m · indexpi,gi(x) = 0(mod.ϕ(pki

i)), (2.6)

whereas for a = −1 we get indexpi,gi(−1) = ϕ(pki

i)/2 and thus

m · indexpi,gi(x) = ϕ(pki

i)/2(mod.pki

i). (2.7)

Now (1) of Lemma 2.1 follows from (2.6) and the theorem on the solution of
linear congruences. The same theorem also implies that (2.7) has a solution
iff

gcd(m, ϕ(pki

i))|ϕ(pki

i)/2

for all i = 1, 2, . . . , t. But the latter holds exactly iff ν2(m) < min{ν2(pi −1) :
i = 1, 2, . . . , t}.�
The next is a lemma due to Monier:

Lemma 2.2. Let n be odd and assume p1, p2, . . . , pt are the distinct prime
factors of n. Then one can write

|ZZ∗
n\Pn| = δn

t∏
i=1

gcd(
n − 1

2
, pi − 1)

where δn assumes one of the values 1/2, 1, 2.

Proof: Define the multiplicative group endomorphisms fn, gn, hn of ZZ∗
n

fn(x) := x(n−1)/2(mod.n),

gn(x) := (x|n)(mod.n),

hn(x) := (x|n) · x(n−1)/2(mod.n).

Let Kn, Ln, Mn be the kernels of fn, gn, hn, resp., and denote

K ′
n := {x ∈ ZZ∗

n : fn(x) = −1(mod.n)},
L′

n := {x ∈ ZZ∗
n : gn(x) = −1(mod.n)},

M ′
n := {x ∈ ZZ∗

n : hn(x) = −1(mod.n)}.
Clearly Mn = ZZ∗

n\Pn. By Lemma 2.1 it follows that

|Kn| =
t∏

i=1

gcd(
n − 1

2
, pi − 1).

However, Mn = (Kn

⋂
Ln)

⋃
(K ′

n

⋂
L′

n). Thus

|Mn| =
{ |Kn ∩ Ln| : K ′

n ∩ L′
n = ∅

2|Kn ∩ Ln| : K ′
n ∩ L′

n �= ∅

2.2 The Solovay-Strassen Test 21

(if K ′
n∩L′

n �= ∅, then choose x0 ∈ K ′
n∩L′

n and consider the bijection x → xx0

to prove |Kn∩Ln| = |K ′
n∩L′

n|). A similar argument using the decomposition
Kn = (Kn ∩ Ln) ∪ (Kn ∩ L′

n) can be used to show

|Kn ∩ Ln| =
{ |Kn| : Kn ∩ L′

n = ∅
(1/2)|Kn| : Kn ∩ L′

n �= ∅.
The assertion follows. �

Theorem 2.1. For all composite odd integers n we have

|ZZ∗
n\Pn|

ϕ(n)
≤ 1

2
.

Proof: Let again
∏t

i=1 pki

i be the prime factorization of n (i.e., p1, p2, . . . , pt

the distinct prime factors of n). By Lemma 2.2 it follows that

|ZZ∗
n\Pn|

ϕ(n)
≤ δn

t∏
i=1

gcd(n−1
2 , pi − 1)

pki−1
i (pi − 1)

. (2.8)

If for some i it holds that ki ≥ 2, then the right-hand side of (2.8) is
bounded from above by δn/3 ≤ 2/3. So ZZ∗

n\Pn must be a proper sub-
group of ZZ∗

n and hence |ZZ∗
n\Pn| ≤ (1/2)ϕ(n). Thus w.l.o.g. we may assume

that all ki = 1. Assume ZZ∗
n = Mn. Since n is composite, it follows that

t ≥ 2. Assume g is a generator of ZZ∗
p1

. By the Chinese remainder theo-
rem there exists an x ∈ ZZ∗

n with x = g(mod.p1) and x = 1(mod.(n/p1)).
By the assumption ZZ∗

n = Mn it follows that x(n−1)/2 = (x|n)(mod.n). But
(x|n) =

∏t
i=1(x|pi) = (g|p1) = −1. So x(n−1)/2 = −1(mod.(n/p1)), which is

a contradiction to x = 1(mod.(n/p1)).�
We mention that the Solovay-Strassen test is deterministic if the so-called
Extended Riemann Hypothesis (see, e.g., Kranakis (1986), 2.10), a famous
conjecture in analytic number theory, is true. This conjecture asserts the fol-
lowing: Let χ be a so-called character modulo n, i.e., a group homomorphism
χ : ZZ∗

n → IC∗, extended to IN by χ(x) := 0 if gcd(x, n) �= 1. Then the
Dirichlet L-series with respect to the character χ is defined as

Lχ(z) :=
∞∑

k=1

χ(k)
kz

,

which is convergent for all complex z with real part greater than 1 and can
be meromorphically extended to an analytic function for all complex z with
positive real part. Now the Extended Riemann Hypothesis is the conjecture
that all zeroes of Lχ with real part in]0, 1] have in fact real part 1/2. Up
to now, the Extended Riemann Hypothesis has not yet been proved, but
there is overwhelming evidence (both by theoretical arguments and numerical
calculations) that it really holds (see e.g. Odlyzko (2001)).

22 2 RSA and Probabilistic Prime Number Tests

2.3 Rabin’s Test

Here, the primality sequence is defined as

Pn = {x ∈ ZZ∗
n : x(n−1)/2e �= 1(mod.n) andx(n−1)/2h �= −1(mod.n)

for all 0 < h ≤ e},
where e := ν2(n − 1) (as defined before). Also here, properties (i)-(iii) of
primality sequences are easily verified. We must again prove (iv). We have

ZZ∗
n\Pn = {x ∈ ZZ∗

n : x(n−1)/2e

= 1(mod.n) orx(n−1)/2h

= −1(mod.n) for some 0 < h ≤ e}. (2.9)

Again, a lemma due to Monier determines the exact size of this set:

Lemma 2.3. Assume n is a composite odd integer with prime factorization
n =

∏t
i=1 pki

i (pi distinct primes). If we write n − 1 = 2eu (u odd), pi − 1 =
2μiui (ui odd), and μ := min{μ1, μ2, . . . , μt}, then

|ZZ∗
n\Pn| = (1 +

2tμ − 1
2t − 1

)
t∏

i=1

gcd(u, ui).

Proof: Put s :=
∏t

i=1 gcd(u, ui). By Lemma 2.1, the first congruence in (2.9)
has exactly s solutions. For any given h, the other congruence in (2.9) has a
solution (and thus s solutions) iff ν2((n − 1)/2h) = e − h < μ. So, for each
h > e − μ, the number of solutions of the equation

x(n−1)/2h

= −1(mod.n)

is given by
t∏

i=1

gcd(
n − 1
2h

, pi − 1).

Hence

|ZZ∗
n\Pn| = s +

e∑
h=e−μ+1

t∏
i=1

gcd(
n − 1
2h

, pi − 1).

Now the assertion follows from the fact that

gcd(
n − 1
2h

, pi − 1) = 2e−h gcd(u, ui).�

Let e and n be as in Lemma 2.3 and define the set

Rn := {x ∈ ZZ∗
n : xn−1 �= 1(mod.n) or 1 < gcd(x(n−1)2h − 1, n) < n

for some 0 ≤ h ≤ e}.

2.3 Rabin’s Test 23

The following lemma is due to Miller, Rabin, and Monier:

Lemma 2.4. For all odd integers n > 2, we have Pn = Rn.

Proof: Take an arbitrary x ∈ ZZ∗
n and consider, for each h such that 2h|n−1,

the expressions

d(h) :=
n − 1
2h

,

b(h) := xd(h),

and
g(h) := gcd(b(h) − 1, n).

Then, if 2h|n − 1, we have the properties:

g(h) = n ⇐⇒ b(h) = 1(mod.n), (2.10)

g(h) = n =⇒ g(h − 1) = n, (2.11)

and
b(h − 1) = b(h)2. (2.12)

1. We first prove that Pn ⊂ Rn. Assume the contrary and let x ∈ Pn\Rn.
It follows that there must be an integer k ≤ e with g(k) = n. As x ∈ Pn,
we have xd(e) �= 1(mod.n), so g(e) �= n. Hence, there exists a k < e with the
property

g(0) = g(1) = . . . = g(k) = n > g(k + 1) = g(k + 2) = . . . = g(e) = 1.

Hence b(k +1)2 = 1(mod.n) and thus n|(b(k +1)− 1)(b(k +1)+1). Together
with the fact that g(k+1) = gcd(b(k+1)−1, n) = 1 this yields that b(k+1) =
−1 (mod.n), which contradicts the assumption x ∈ Pn.
2. Now let us show the relation Rn ⊂ Pn. Assume, on the contrary, that
there exists some x ∈ Rn\Pn. Then either b(e) = 1(mod.n) or there is some
h ∈ {1, 2, . . . , e} with b(h) = −1(mod.n). In the first case x �∈ Rn, so we may
assume that b(e) �= 1(mod.n). We may choose some k ≤ e such that

b(0) = b(1) = . . . = b(k − 1) = 1(mod.n),

but
b(k) = −1(mod.n).

From the fact that b(k) = b(k + j)2
j

= −1(mod.n), we get

b(k) − 1 = b(k + 1)2 − 1 = b(k + 2)4 − 1 = . . . = b(e)2
e−k − 1 = −2(mod.n).

But for all j ≤ e − k there is an integer sj with the property

b(k + j)2
2j

− 1 = (b(k + j) − 1)sj = −2(mod.n).

24 2 RSA and Probabilistic Prime Number Tests

As n is odd and greater than 2 by assumption, we obtain that g(k + j) = 1
for all j ≤ e − k. Since, on the other hand, g(j) = n for all j < k, we deduce
that g(h) ∈ {1, n} for all h. So indeed x �∈ Rn. �

Now we are ready to calculate the primality constant, i.e., to verify property
(iv) of primality sequences. Denote qi := pki

i (as before, pi denote the distinct
prime factors of n and ki the maximal power in which they occur in the prime
factorization of n (i = 1, 2, . . . , t)). Furthermore, put hi := gcd(ϕ(qi), n − 1),
mi := ϕ(qi)/hi, ei := ν2(hi), and αi := max{ei − ej : j = 1, 2, . . . , t}. One
observes that if ei = min{e1, e2, . . . , et}, then αi = 0. Define

I := {1 ≤ i ≤ t : αi > 0},
J := {1 ≤ i ≤ t : αi = 0},

and α :=
∑t

i=1 αi, β := |J |. We have β > 0 and α + β ≥ t. The following
theorem gives a general expression for the primality constant of the Rabin
test:

Theorem 2.2. If n > 2 is a composite odd integer with prime factorization
n =

∏t
i=1 pki

i (pi the distinct prime factors), then

|ZZ∗
n\Rn|
ϕ(n)

≤ 1
2α+β−1

∏t
i=1 mi

.

Proof: Assume x ∈ ZZ∗
n\Rn. So xn−1 = 1(mod.n). For i = 1, 2, . . . , t, denote

by gi a generator of ZZ∗
qi

. It follows that there are si < ϕ(qi) with x =

gsi

i (mod.qi). Hence xn−1 = g
si(n−1)
i = 1(mod.qi) and ϕ(qi)|si(n − 1). As

gcd(mi, n−1) = 1 and mi|si(n−1), we obtain the existence of �i < ϕ(qi)/mi

such that si = mi�i. Hence

x = gmi�i

i (mod.qi) (2.13)

and si(n − 1) = mi�i(n − 1) = ϕ(qi)�i
n−1
hi

. It can be proved that

2αi |�i (i = 1, 2, . . . , t). (2.14)

[W.l.o.g. we may assume αi > 0. Choose j such that αi = ei − ej > 0 and
define fi := ν2(n−1)−ei ≥ 0. Thus for γi := ei−ej+fi we get ν2(d(γi)) = ej .
Furthermore, hj|d(γi). Thus ϕ(qj) = hjmj |mjd(γi). From (2.13) we get

xd(γi) = g
mj�jd(γi)
j = 1(mod.qj).

Hence 1 < qj ≤ gcd(xd(γi) − 1, n) = n (since x �∈ Rn) and thus xd(γi) =
1(mod.n). Together with (2.13) this implies hi|d(γi)�i. Assertion (2.14) fol-
lows.] Now (2.13) and (2.14) yield

|ZZ∗
n\Rn| ≤

t∏
i=1

ϕ(qi)
2αimi

≤ ϕ(n)
2α

∏t
i=1 mi

.

2.4 *Bit Security of RSA 25

So it suffices to prove that β = 1. Assume, on the contrary, that β ≥ 2. All
ei with i ∈ J have the same common value e∗, say. Put γ′

j := fj + 1, which
also has the same value γ, say, for all j ∈ J . So hj/2|d(γ), but hj is not a
divisor of d(γ). However, due to (2.13), for all j ∈ J we have

xd(γ) = 1(mod.qj) ⇐⇒ ϕ(qj)|�jmjd(γ) ⇐⇒ hj |�jd(γ).

On the other hand, gcd(xd(γ) − 1, n) ∈ {1, n} since x ∈ ZZ∗
n\Rn. So 2|�j is

either true for all j ∈ J or false for all j ∈ J . Now the assertion follows from
the fact that 2αi |�i for all i ∈ I. �

The following corollary gives a still more explicit estimate of the primality
constant for all relevant cases:

Corollary 2.1. For all odd composite integers n ≥ 11, it holds that

|ZZ∗
n\Rn|
ϕ(n)

≤ 1
4
.

Proof: In case t ≥ 3, the corollary follows directly from Theorem 2.2. The
same is the case if t = 2 and either m1 = 2 or m2 = 2 (since r = 2 implies
α + β − 1 ≥ 1). We consider first the case t = 2, m1 = m2 = 1. So we may
write n = p1p2, w.l.o.g. with p1 < p2. But then

p2 − 1 = ϕ(p2)|n − 1 = p1(p2 − 1) + (p1 − 1),

which is not possible. So it remains the case t = 1. If we write n = pk for
some k ≥ 2, we get

|ZZ∗
n\Rn| ≤ |{x ∈ ZZ∗

n : xn−1 = 1(mod.n)}| ≤ gcd(n − 1, p− 1) = p − 1

and thus |ZZ∗
n\Rn|
ϕ(n)

≤ p − 1
pk−1(p − 1)

=
1

pk−1
≤ 1

4

since p ≥ 11. �

For integers n with many different prime factors, we have even a better esti-
mate of the primality constant (see Kranakis (1986), Theorem 2.34):

Corollary 2.2. For odd integers n > 2 whose number of distinct prime fac-
tors is t, we have

|ZZ∗
n\Rn|
ϕ(n)

≤ 1
2t−1

.

For further quantitative results in this context see Darmg̊ard et al. (1993).

2.4 *Bit Security of RSA

Denote by Lsb(x) the least significant bit of the natural number x (repre-
sented in its binary expansion). By a little abuse of notation, we will also

26 2 RSA and Probabilistic Prime Number Tests

write Lsb(x) for x := x(mod.n) represented as an element of {0, 1, . . . , n−1}.
As before, let p, q be distinct odd primes, n := pq. Assume the RSA exponent
e is relatively prime to ϕ(n). The following theorem says that if a polynomial-
time algorithm for calculating the least significant bit of the plaintext x ex-
ists, then a polynomial-time algorithm for calculating the whole of x also
exists. Similar considerations can also be made e.g., for the Rabin system,
see Kranakis (1986), 5.7 and also Delfs, Knebl (2002), 7.

Theorem 2.3. If there exists a polynomial-time algorithm

A1 = A1(n, e, y) = Lsb(x) (x ∈ ZZ∗
n),

then there is also a polynomial-time algorithm

A2 = A2(n, e, y) = x (x ∈ ZZ∗
n).

Proof: The method of proof is rational approximation, i.e. to calculate a ∈
ZZ∗

n and u ∈ [0, 1[∩IQ such that

|ax − un| <
1
2
.

The algorithm proceeds recursively. Let u0 := 0 and a0 := 1 be the starting
values. Let 2−1 denote the inverse of 2(mod.n). Define recursively

at := 2−1at−1

and
ut :=

1
2
(ut−1 + Lsb(at−1x)).

With this definition, we obtain

atx = 2−1at−1x

=
{

1
2at−1x : at−1x = 0(mod.2)

1
2 (at−1x + n) : at−1x = 1(mod.2). (2.15)

By the fact that
Lsb(atx) = A1(n, e, ae

ty)

it is possible to decide whether atx is even from the data available to Eve
(i.e., without knowing x explicitly) and thus the recursion step (2.15) can
really be done by Eve. So

|a0x − u0n| < n,

|atx − utn| =
1
2
||at−1x − ut−1n|,

and hence after |n| + 1 steps (where |n| means the length of the binary
expansion of n) she will have

2.4 *Bit Security of RSA 27

|a|n|+1x − u|n|+1n| <
n

2|n|+1
<

1
2
. (2.16)

But from (2.16) it follows that

a|n|+1x = �u|n|+1n +
1
2
�

and hence
x = a−1

|n|+1�u|n|+1n +
1
2
�(mod.n).�

An analogue of Theorem 2.3 also exists for probabilistic algorithms.

Definition 2.1. A probabilitstic algorithm is an algorithm A that, during the
computation of the output y from the input x, is allowed to generate a finite
number of independent unbiased random bits, and the next step may depend
on the results of the preceding random bits. The number of random bits may
depend on the outcome of the previous ones, but is bounded by some constant
tx for a given input x.
A probabilistic algorithm is called polynomial-time (or polynomial) if the run-
ning time of A(x) is bounded by some polynomial ξ(|z|) that is independent
of z. (Generating a random bit counts as one step in the complexity of the
algorithm.)

A polynomial ξ(z) is called positive, if ξ(z) > 0 for all z > 0. The following
theorem is the probabilistic analogue of Theorem 2.3:

Theorem 2.4. Let p, q be distinct odd primes and write n := pq for their
product. Assume e is relatively prime to ϕ(n) and denote y := xe(mod.n).
Let ξ and η be positive polynomials with integer coeffficients. Suppose there
exists a probabilistic polynomial time algorithm A1 such that, for uniformly
distributed x on ZZ∗

n, it holds that

P (A1(n, e, y) = Lsb(x)) ≥ 1
2

+
1

ξ(|n|) .

Then there exists a polynomial-time algorithm A2 such that

P (A2(n, e, y) = x) ≥ 1 − 2−η(|n|).

The proof of Theorem 2.4 rests on the following lemmas. The first one is just
a consequence of a quantitative version of the Weak Law of Large Numbers:

Lemma 2.5. Assume S1, S2, . . . , Sn are pairwise independent binary random
variables with common expectations E(Si) =: α = 1

2 + ε (ε > 0). Then

P (
t∑

i=1

Si >
t

2
) ≥ 1 − 1

tε2
.

28 2 RSA and Probabilistic Prime Number Tests

Proof: Observe that

|1
t

t∑
i=1

Si − α| < ε

implies
1
t

t∑
i=1

Si >
1
2
,

and therefore (with the aid of Čebyšev’s inequality and some straightforward
calculations) we obtain

P (
t∑

i=1

Si >
t

2
) ≥ P (|1

t

t∑
i=1

Si − α| < ε)

≥ 1 − 1
tε2

.�

Lemma 2.6. Under the hypotheses of Theorem 2.4, there exists a probabilis-
tic polynomial-time algorithm L with the following properties: If a, b are in-
dependent randomly chosen elements of ZZ∗

n (according to the uniform distri-
bution on this set),if we take u, v ∈ IQ such that

|ax − un| ≤ ε3n

8

and
|bx − vn| ≤ εn

8
(for some ε > 0 small enough), and if we put (recursively) a0 := a and
at := 2−1at−1, then L successively computes values �t (for t = 0, 1, . . . , |n|)
such that

P (�t = Lsb(atx) | �j = Lsb(ajx)(0 ≤ j ≤ t − 1)) ≥ 1 − 1
2|n| . (2.17)

(In fact, we choose a, b ∈ ZZn. But otherwise, then we may factor n just by
the Euclidean algorithm.)
Proof of Lemma 2.6: Put m := min{2t/ε2, 2|n|/ε2}. Then w.l.o.g. we may
assume that p, q > m because otherwise, we can factorize n in polynomial
time just by exhaustive search.
Put first

α := Lsb(ax),

β := Lsb(bx).

We now show first how to calculate �t = Lsb((at + iat−1 + b)x) (w.l.o.g. we
may assume that at + iat−1 + b is really invertible mod.n, for otherwise we
can factor n just with the Euclidean algorithm). The following subroutine
(which calculates �t, at, and ut recursively (the resulting algorithm will be
called L′)) is run: The initial value is �0 := α, at−1 := a0 := a, and ut−1 := u:

2.4 *Bit Security of RSA 29

– C0 ← 0; C1 ← 0;
– at ← 2−1at−1; ut ← 1

2 (ut−1 + α);
– FOR i = −m/2 to m/2 − 1 DO

– A ← at + iat−1 + b;
– W ← �ut + iut−1 + v�;
– B ← (iα + β + W)(mod.2);
– IF A1(n, e, Aey(mod.n)) + B = 0
• THEN C0 ← C0 + 1;
• ELSE C1 ← C1 + 1,

– ut−1 ← ut; at−1 ← at;
– IF C0 > C1

– α ← 0;
– α ← 1;

– RETURN α;

So we have got the ”modified value” α := �t = Lsb((at + iat−1 + b)x).
Now we will calculate what we really want, namely Lsb(atx). We will see that
the hypotheses of Lemma 2.6 guarantee that we can indeed infer Lsb(atx)
with high probability. For i = −m/2,−m/2 + 1, . . . , m/2 − 1 define

At,i := at + iat−1 + b,

W ′
t,i := ut + iut−1 + v,

Wt,i := �W ′
t,i�,

Bt,i := (i · Lsb(at−1x) + Lsb(bx) + Lsb(Wt,i))(mod.2).

We want to compute Lsb(atx) (recursively) from the data

Lsb(At,ix), Lsb(at−1x), Lsb(bx).

Put

λt,i := atx + i · at−1x + bx

= wn + At−ix

where
w := �λt,i/n�.

Then

Lsb(λt,i) = (Lsb(atx) + i · Lsb(at−1x) + Lsb(bx))(mod.2)

and

Lsb(At,ix) = (Lsb(λt,i) + Lsb(w))(mod.2)
= (Lsb(atx) + i · Lsb(at−1x) + Lsb(bx) + Lsb(w))(mod.2),

30 2 RSA and Probabilistic Prime Number Tests

and we obtain

Lsb(atx) = (Lsb(At,ix) + i · Lsb(at−1x) + Lsb(bx) + Lsb(w))(mod.2).

Now let us determine w and its least significant bit Lsb(w). The method
will be to show that w equals Wt,i with high probability and that, on the
other hand, it is really possible to compute Wt,i in polynomial time from
the available data ut (the rational approximation of atx), ut−1 (the rational
approximation of at−1x), and v (the rational approximation of bx). If indeed
Wt,i = w, we have

Lsb(atx) = (Lsb(At,ix) + Bt,i)(mod.2).

Now assume that the algorithm L′ has computed the least significant bit
correctly in all preceeding steps, i.e.,

Lsb(ajx) = �j (0 ≤ j ≤ t − 1).

We intend to give a lower bound for the probability that Wt,i = w. Denote
the random variable

Z := |λt,i − W ′
t,in|.

We may estimate

Z = |atx − utn + i(at−1x − ut−1n) + bx − vn|
≤ |1

2
(at−1x + ut−1n)(1 + 2i)| + |bx − vn|

≤ n

2t

ε3

8
|1 + 2i| + ε

8
n

≤ ε

8
n(

ε2m

2t
+ 1)

≤ ε

4
n. (2.18)

Under our assumption that �j = Lsb(ajx) (j = 0, 1, . . . t− 1) if follows (as in
the proof of Theorem 2.3) that

|ajx − ujn| =
1
2
|(aj−1x − uj−1n)| (1 ≤ j ≤ t).

Furthermore |1 + 2i| ≤ m (since −m/2 ≤ i ≤ m/2− 1). Now we observe that
Wt,i �= w iff there is a multiple of n between λt,i and W ′

t,in. The latter is not
the case, if the following holds:

ε

4
n < λt,i = At,ix < n − ε

4
n.

2.4 *Bit Security of RSA 31

Hence by the uniform distribution of a and b on ZZ∗
n it follows that the

λt,i = (2−1 + i)at−1 + bx

are also uniformly distributed and thus

P (Wi,t = w) ≥ P (
ε

4
n < At,ix < n − ε

4
n)

≥ 1 − ε

2
.

Now we want to show

P (�t = Lsb(atx) | �j = Lsb(ajx)(0 ≤ j ≤ t − 1)) ≥ 1 − 1
2|n| . (2.19)

Consider the events

E1,i := {A1(n, e, Ae
t,iy) = Lsb(At,ix)}

and
E2,i := {ε

4
n < At,ix < n − ε

4
n}.

It follows that P (E1,i) ≥ 1
2 + ε and P (E2,i) = 1− ε/2. Consider the indicator

random variables Ii := 1(E1,i ∩ E2,i). The algorithm L computes Lsb(atx)
correctly in the i-th step if both events E1,i and E2,i occur. So it follows that

P (Ii = 1) ≥ P (E2,i) − (1 − P (E1,i))

> (1 − ε

2
) − (

1
2
− ε)

=
1
2

+
ε

2
.

Now assume i �= j. Take the probabilities P (Ii = d) and P (Ij = d) (d ∈
{0, 1}) over all random choices of a, b ∈ ZZ∗

n and the random bit generations
produced by the algorithms A1(n, e, Ae

t,iy) and A1(n, e, Ae
t,jy). If we define

the 2 × 2-matrix

Δ :=
(

2−1 + i 2−1 + j
1 1

)
which is invertible over ZZ∗

n and has determinant i − j ∈ ZZ∗
n (since |i − j| <

m < min{p, q}), then we have

(At,i, At,j) = (at−1, b)Δ = (2−t+1a, b)Δ.

This implies that for i �= j, the random vectors At,i and At,j are independent.
So the events E2,i and E2,j and the random variables Ae

t,iy and Ae
t,jy (i �= j)

are independent. Hence (for i �= j) the events E1,i and E1,j and thus the
indicator variables Ii and Ij are independent. By Lemma 2.5, it follows that

32 2 RSA and Probabilistic Prime Number Tests

P (
m/2−1∑

i=−m/2

Ii >
m

2
) ≥ 1 − 1

nε2
≥ 1 − 1

2|n| .

If Lsb(atx) = 0, then we have C0 ≥ ∑
i Si and thus

P (C0 > C1) ≥ 1 − 1
2|n| .

On the other hand, if Lsb(atx) = 1, then by analogy

P (C1 > C0) ≥ 1 − 1
2|n| .

The assertion of the lemma follows.�
Now we are ready to prove Theorem 2.4:
Proof of Theorem 2.4: We run the following algorithm:

– Choose a, b ∈ ZZ∗
n at random.

– Guess u, v ∈ [0, 1] ∩ IQ such that

|ax − un| ≤ ε3

8
n

and
|bx − vn| ≤ ε

8
n.

– Guess α := Lsb(ax), β := Lsb(bx).
– Compute �0, �1, . . . , �|n| by the algorithm L from Lemma 2.6.
– FOR t = 0, 1, . . . , |n| DO u ← 1

2 (u + �t), a ← 2−1a.
RETURN a−1�un + 1

2�.
It is easy to see that this algorithm is indeed polynomial, since there are only
polynomially many alternatives for all guesses, and both the calculation of
each alternative and checking the result can be done in polynomial time. For
guessing u, v, one has to consider polynomially many (namely 8/ε3 and 8/ε)
intervals and there are only 2 possible values for α and β. This algorithm
(called A) has success probabilty

P (A(n, e, y) = x) ≥ (1 − 1
2|n|)

n.

If we repeat A sufficiently many times (with independent inputs and ev-
ery time using the trivial deterministic algorithm for testing the result), the
assertion of Theorem 2.4 follows. [The probabilty of a wrong answer in t
repetitions is bounded by

2.5 The Timing Attack on RSA 33

(
1
2
− 1

ξ(|n|))t < (1 − 2
ξ(|n|))t

= (1 − (
2

ξ(|n|))ξ(|n|)/2)2t/ξ(|n|)

< e−2t/ξ(|n|)

≤ e− log 2·η(|n|)

= 2−η(|n|)

for large enough t .]�

2.5 The Timing Attack on RSA

The fact that factoring is probably computationally difficult should not lead
us to believe that there are no attacks possible on RSA. See, e.g., Boneh
(1999). Here, we will present a type of attack based rather on the imple-
mentation of RSA than on the algorithm itself. It may be possible for Eve
to measure the time a smartcard uses for performing RSA-operations. With
this, she may be able to recover the private key dA of Alice. We first show the
repeated squaring algorithm for computing y = xdA(mod.nA), which runs in
time linear in log dA. Let

dA = dmdm−1 . . . d0

be the binary expansion of dA. Observe that

y =
m∏

i=0

x2idi(mod.nA).

The repeated squaring algorithm works as follows:

– Put the initial values X ← x and Y ← 1.
– For i = 0, 1, . . . , n put Y ← Y · X(mod.nA) (if di = 1) and X ←

X2(mod.nA).

Then at the end we have Y = y.
The timing attack can now be mounted by Eve as follows: She takes a large
number k of random plaintexts x1, x2, . . . , xk ∈ ZZ∗

nA
and measures the time

Ti the smartcard uses for encrypting xi. Now she may recover the bits di

of dA in the following way: Of course dA is odd, so d0 = 1. In the second
iteration, the smartcard computes Y · X = X · X2(mod.nA) iff d1 = 1. Let
ti denote the time the smartcard uses for computing xi · x2

i (mod.nA). Eve
can have measured these ti offline before mounting the attack and compares
them now with the Ti. Namely, it turns out (Kocher) that if d1 = 1, the se-
quences {Ti}1≤i≤k and {ti}1≤i≤k are (positively) correlated, whereas in the
other case they behave as independent random variables. So by measuring
the correlation of {Ti}1≤i≤k and {ti}1≤i≤k, Eve can guess d1, etc.

34 2 RSA and Probabilistic Prime Number Tests

Of course, this attack can be avoided by adding artificial delays on the smart-
card so that all modular exponentiations take the same time and can there-
fore not be distinguished by measuring time. Another possibility is so-called
blinding, suggested by Rivest: Before encrypting the plaintext x, one picks a
random r ∈ ZZ∗

nA
and replaces x by

x′ := xreA (mod.nA).

Now the RSA-encryption of x′ yields

y′ = (x′)dA(mod.nA)

and the output of the smartcard is

y = y′/r(mod.nA).

Here, the RSA-exponentiation with dA has been applied to x′ that behaves
randomly, so the timing attack before is not possible.
If the exponentiation with the secret exponent is done by Montgomery’s
multiplication algorithm for the prime factors of the secret exponent and the
Chinese remainder theorem to obtain the final result, then one can not use
the above-mentioned attack, but rather the one described in Schindler (2000).
Other related attacks are the measuring of power consumption of the smart-
card. As a consequence one sees that despite the theoretical strength of the
RSA system, its implementation in hardware must be done with much care.
(This is, of course, also true for other cryptosystems.) For more information
on timing attacks, see e.g. Schindler (2002a). Here, interesting methods from
statistical desicion theory (which are beyond the scope of this text) come
into play. A combined timing and power attack on RSA was presented in
Schindler (2002b) and Schindler, Walter (2003). An interesting observation
in this direction for elliptic-curve cryptosystems was made by Okeya, Sakurai
(2000).

2.6 *Zero-Knowledge Proof for the RSA Secret Key

Up to now, we have always assumed that the parties Alice and Bob trust
each other and that they only want to prevent Eve from eavesdropping. In
this short section, we take another view: Alice wants to convince Bob that
she knows some secret but she does not want to give Bob any information
about the secret itself. For example, she wants to tell Bob that she knows,
say, Carol’s private RSA key, but she does not want to give him any hint
as to the key itself or even decrypt one of Carol’s messages to Bob. Let
e = eC resp. d = dC be Carol’s private resp. public key. The zero-knowledge
protocol will involve an interactive fair so-called coin-flipping subprotocol.
There are different ways to do this. We present the method with the square
roots. Other methods use exponention modulo a prime or Blum integers (see
Schneier (1996), pp. 542f.)

2.6 *Zero-Knowledge Proof for the RSA Secret Key 35

1. Alice chooses two large primes p, q and sends their product n := pq to
Bob.

2. Bob chooses a random natural number r < n/2 and sends

z := r2(mod.n)

to Alice.
3. Since she knows p and q, Alice can compute the 4 square roots x,−x, y,−y

(say) of z(mod.n). Denote (with slight abuse of notation)

x′ := min{x(mod.n),−x(mod.n)}

and
y′ := min{y(mod.n),−y(mod.n)}.

Then we have r ∈ {x′, y′}.
4. Alice guesses if r = x′ or r = y′ and transmits her guess to Bob.
5. If Alice’s guess was correct, then the coin-flipping subalgorithm outputs

1, otherwise 0.
6. Verification subsubprotocol: Alice sends p and q to Bob, Bob computes

x′ and y′ and sends them to Alice, then Alice calculates r.

Since Alice can not know r, her guess is really random. In step 4, she tells
Bob only one bit of her guess in order to prevent him from obtaining both x′

and y′. If Bob has both of these two numbers, he can change r after step 4.
Now the zero-knowledge protocol proceeds as follows:

– Alice and Bob agree on random k, m such that

km = e(mod.n)

(with k, m ≥ 3, otherwise they restart the algorithm) using a coin-flipping
protocol.

– Again by a coin-flipping protocol, Alice and Bob generate a random ci-
phertext y.

– Alice uses Carol’s private key to compute

x = yd(mod.n)

and
t := xk(mod.n)

and sends t to Bob.
– Bob checks if tm = y(mod.n). If yes, he believes Alice.

This protocol can be rerun several times. Then the probability that Alice
bluffs decreases exponentially with the number of times the algorithm is
executed.

3 Factorization with Quantum Computers:

Shor’s Algorithm

3.1 Classical Factorization Algorithms

The most famous classical factorization algorithms are the Quadratic Sieve
(QS) and the Number Field Sieve (NFS). Though being subexponential, they
are not polynomial. The QS is the fastest general-purpose factorization algo-
rithm for numbers with less than 110 digits, whereas the NFS has the same
property for numbers with more than 110 digits (see Schneier (1996), p.256).
Recently, RSA-576 with a number of 174 decimal digits was factorized by
Franke from the Universoty of Bonn with the aid of the NFS. The NFS was
also used to factorize the Mersenne number 2757−1 (with 288 decimal digits)
by the Internet project NESNET (about 5 months of computing time on up
to 120 machines was necessary). Further limits on the factorization of large
numbers can be found on the Internet site CiteSeer. For particular types of
numbers to be factorized, many specially designed algorithms have been de-
veloped, which in these cases are faster than the above-mentioned ones. A
new direction of cryptanalysis would be the possible use of quantum com-
puters istead of classical Turing machines. Up to now, quantum computing
has been more or less only a theoretical concept based on the superposition
principle of quantum mechanics. Beyond some basic experiments, nobody
has really an idea how to realize physical quantum computers working effi-
ciently. However, if one day quantum computers could be built, this would
have dramatic consequences for cryptology. Namely, in the second half of the
1990s, Peter Shor showed that on a quantum computer, large numbers can
be factorized in linear (with respect to the length of the binary expansion of
the number) time! So in this case, the RSA and all related systems would be
worthless against an adversary who has a quantum computer at his disposal.
Shor’s method is in fact a hybrid algorithm in the sense that it consists of
four components, one being done by quantum computing and three others (a
little trick based on the Euclidean algorithm from elementary number theory,
Fourier transform and continued-fraction approximation) that can be done
on a classical computer. (Note that the Fourier transform component can,
but need not be done on a quantum computer.) This algorithm will be ex-
plained in Section 3.4. We note that Shor has developed another algorithm
for solving the discrete logarithm problem on quantum computers. Here, we
will not discuss that, but the principles are similar.

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 37-45, 2004.
© Springer-Verlag Berlin Heidelberg 2004

38 3 Factorization with Quantum Computers: Shor’s Algorithm

Note that in contrast to Chapter 13, where we will present the ideas of quan-
tum cryptography, here we use quantum computers to cryptanalyze classical
cryptosystems.
We remark that there is a new approach due to Hungerbühler, Struwe (2003),
who suggest the heat flow as a cryptographic system that resists also attacks
by quantum computers. It is based on the second principle of thermodynam-
ics (increase of entropy). The evolution problem for the heat equation is a
well-posed initial-value problem, which can be solved very precisely by nu-
merical methods, whereas the evolution problem in backward time is ill-posed
and numerical methods for solving the heat equation for negative time are
inherently unstable.

3.2 Quantum Computing

Let us now give a short introduction to quantum computing, which rests on
a non-Kolmogorovian type of probability, namely quantum stochastics. In
the following, we will present some basic facts on quantum mechanics and
quantum computing. In quantum physics, the state of a quantum system is
described by a vector in a (complex) Hilbert space H . It is customary to
write such a state vector as a column vector, or - in the jargon of quantum
physics - as ”ket vector” |ψ〉. The corresponding line vector is written as
〈ψ| and called ”bra vector”. The squared norm of the vector, or - in other
words - the scalar product of the vector with itself is then written as 〈ψ|ψ〉,
which becomes a bracket. We now come to the process of measurement in
quantum mechanics. As a principle, in quantum mechanics measurements of
observables are described by Hermitian operators A acting on the underlying
Hilbert space H . If the system is in an eigenstate of A, then the measure-
ment with the operator A just reproduces the state, multiplied with a real
number (since A is Hermitean). If the system is not in an eigenstate, then
the outcome of the measurement will collapse to one of the observables (cor-
responding to eigenstates (eigenvalues)) of A, but what is important is that
it cannot be predicted in advance to which one. Only probabilites can be
indicated, which correspond to the principle of superposition. The result of
any measurement of a quantum system described by the state vector |ψ〉 is
always one of the eigenvalues of the operator A, corresponding to the observ-
able being measured. If the system is in an eigenstate of A, then the outcome
of the measurement is just the corresponding eigenvalue of this eigenstate. In
general, the system will be in some general state φ. Then we may represent φ
as a complex linear combination with respect to a basis {ψi}i of eigenstates
of A:

|φ〉 =
∑

i

ωi|ψi〉, (3.1)

where the ωi are called the probability amplitudes. If w.l.o.g. we assume that∑
i |ωi|2 = 1, then |ωi|2 is interpreted as the probability that the system is in

3.2 Quantum Computing 39

eigenstate i with respect to A. So a quantum system can exist in a blend of
all its eigenstates with respect to a certain Hermitian measurement operator
simultaneously. This is called the principle of superposition and is the big
difference between quantum and classical mechanics, where absolutely no
such analogue exists. If the system is in a superposition of states as in (3.1),
then the probability of each possible outcome of the measurement A (i.e. of
each possible eigenvalue) is given by |ωi|2. An unobserved quantum system
is governed by Schrödinger’s equation

ih|ψ̇(t)〉 = Ĥ(t)|ψ(t)〉,

where h = 1.0545 · 10−34Js is Planck’s constant and Ĥ(t) is the Hamiltonian
(unitary operator) related to the total energy of the system; so the system
behaves smoothly until it is measured.

Definition 3.1. A qubit (quantum bit) is a quantum 2-state system

|ψ〉 = α|0〉 + β|1〉, (3.2)

where α, β ∈ IC such that |α|2+ |β|2 = 1. (Note that |0〉 and |1〉 are just names
for the eigenvectors representing a classical bit and have nothing to do with
the zero vector in the Hilbert space H = IC2.)

It is an easy exercise to show that for |ψ〉 as in (3.2) there exist angles θ, φ
such that

|ψ〉 = cos θ|0〉 + eiφ sin θ|1〉. (3.3)

So a (single) qubit can, geometrically, be interpreted as a point on the two-
dimensional unit sphere, the north pole (e.g.) representing the eigenstate |1〉
and the south pole the eigenstate |0〉. It turns out that information that
in classical computers use much memory can be stored with much fewer
qubits in quantum computers. Let us begin with a simple example: Assume
we have two classical complementary bitstrings of length 7, e.g., |0110101〉
and |1001010〉. In order to store them in a classical computer, we need two
registers each of length 7 bit. However, on a quantum computer, only one
register of 7 qubits suffices, since here we can just store the superposition
1√
2
(|0110101〉+ |1001010〉). More generally, if we have an exponential number

of bits to store, by using the superposition principle, a polynomial number of
qubits suffices. (Of course, these superpositions can be very complicated in
general.) An n-qubit memory register is realized by the n-fold tensor product
of the 1-qubit register. However, quantum evolvement of such a register may
lead to states that are defined as a whole, but do not arise from individual
qubits, i.e., the individual qubits are not defined as such. Such states are
called entangled (Schrödinger used the german word ”verschränkt” for it). A
very important fact is that measurements of subsets of qubits in an n-qubit
register project out the state of the whole register into a subset of eigenstates
consistent with the answers (eigenvalues) obtained from the measurement.

40 3 Factorization with Quantum Computers: Shor’s Algorithm

This has to do with quantum teleportation and the Einstein-Podolsky-Rosen
experiment. Another aspect is quantum parallelism. Quantum evolution is
performed by unitary operators (on ”single processors”), which operate at
the same time on all possible states. These phenomena will be crucial in
Shor’s algorithm.

3.3 Continued Fractions

A regular continued fraction is an expression of the type

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 . . .

(3.4)

with finitely or infinitely many members ak ∈ IN (k ∈ IN), a0 ∈ ZZ. For
graphical simplicity, it is also customary to write (3.4) as

[a0, a1, a2, a3, a4, . . .]. (3.5)

For an infinite regular continued fraction (3.5), finite expressions

[a0, a1, . . . , an]

are called ”approximating fractions”. Finite regular continued fractions rep-
resent rational numbers (moreover, the ak are uniquely determined if we
suppose that the last one of them is ≥ 2), whereas for irrational numbers the
following Theorem 3.1 on ”continued fraction approximation” is valid. Often
we will use the notation

ξ = [a0, a1, . . .]

for both finite and infinte continued fractions (i.e. for both ξ rational or
irrational). When ξ is rational, then the above will mean that finite continued
fraction whose last denominatior is > 1.

Theorem 3.1. Every infinite regular continued fraction [a0, a1, . . .] converges
to an irrational number ξ0. Conversely, every irrational number ξ0 is the
limit of a unique regular continued fraction, which is necessarily infinite:
ξ0 = [a0, a1, . . .].

Proof: 1. It is easily verified that one may write

[a0, a1, . . . , an] =
An

Bn

if one defines the An and Bn by the linear depth 2-recursion A−1 := 1,B−1 :=
0,A0 := a0,B0 := 1,

3.3 Continued Fractions 41

An := anAn−1 + An−2,

Bn := anBn−1 + Bn−2 (n ≥ 1). (3.6)

It follows from (3.6) that limn→∞ An = limn→∞ Bn = ∞. Consider the
system of equations

ξn = an +
1

ξn+1
(n ∈ IN0). (3.7)

System (3.7) can also be written as

ξ0 = [a0, a1, . . . , an−1, ξn] (n ∈ IN), (3.8)

which is equivalent to

ξ0 =
An−1ξn + An−2

Bn−1ξn + Bn−2
. (3.9)

Hence we get

ξ0 − An−1

Bn−1
=

An−2Bn−1 − An−1Bn−2

Bn−1(Bn−1ξn + Bn−2)
=

(−1)n−1

Bn−1(Bn−1ξn + Bn−2)
→ 0

(n → ∞), (3.10)

i.e. indeed
ξ0 = lim

n→∞
An

Bn
= [a0, a1, . . .]. (3.11)

2. Now we show that every infinite regular continued fraction converges to
some limit ξ0, i.e., that

ξ0 := lim
n→∞

An

Bn
(3.12)

exists. For the difference between two consecutive approximating fractions,
after some calculations, one obtains the estimate

|An+m−1

Bn+m−1
− Am−1

Bm−1
| <

1
Bm−2Bm−1

, (3.13)

which shows that the sequence {An

Bn
}n≥1 is indeed a Cauchy sequence, i.e.

convergent to some real number ξ0.
3. It remains to prove that the ξ0 as it was just defined in 2. is irrational. Put

ξn := [an, an+1, . . .] (n ∈ IN0). (3.14)

From (3.9), this yields (similarly as for (3.10))

Bn−1ξ0 − An−1 =
Bn−1An−2 − Bn−2An−1

Bn−1ξn + Bn−2
=

(−1)n−1

Bn−1ξn + Bn−2
→ 0

(n → ∞). (3.15)

42 3 Factorization with Quantum Computers: Shor’s Algorithm

So, as n → ∞, the expression Bn−1ξ0 − An−1 tends to zero without really
becoming zero, which is only possible if ξ0 is irrational (for, otherwise, if
ξ0 = p/q (p, q ∈ ZZ), the term |Bn−1ξ0 − An−1| = |Bn−1p − An−1q|/|q|
cannot fall below 1/|q| without becoming zero).
4. Eventually, we show that the approximation of an irrational number by an
infinite regular continued fraction is unique. Of course we have ξn ≥ an for
all n. Since ξ0 and thus all ξn are irrational, equality is not possible, so we
have ξn > an for all n ∈ IN0. Now if

ξ0 = [b0, b1, . . .]

and if we put
ηn := [bn, bn+1, . . .],

then we also have
ηn−1 = [bn−1, bn−2, . . .]

and thus
ηn−1 = [bn−1, ηn] = bn−1 +

1
ηn

. (3.16)

Since ηn > bn ≥ 1, it follows that bn−1 is the largest integer contained in ηn−1,
so in particular, b0 is the largest integer contained in η0, and thus b0 = a0.
But in this case, equation (3.16) yields η1, and by the same reasoning as
before, it follows that b1 = a1, etc. �

The following proposition (whose proof is just a short verification) will be of
importance in the proof of Theorem 3.2:

Proposition 3.1. If
ξ0 = [a0, a1, . . . , an−1, ξn]

and
ξn = [an, an+1, . . .],

then it follows that

ξ0 = [a0, a1, . . . , an, an+1, . . .].

Now we are ready to state the result that will be used to develop Shor’s
algorithm:

Theorem 3.2. If c, d ∈ ZZ obey the inequality

|ξ0 − c

d
| <

1
2d2

, (3.17)

then c
d is an approximating fraction of ξ0.

3.4 The Algorithm 43

Proof: Put
ξ0 − c

d
=

θδ

d2
, (3.18)

where δ = ±1 and then 0 < θ < 1
2 . Furthermore, we write c

d as a finite
continued fraction

c

d
=: [a0, a1, . . . , an−1], (3.19)

where we choose n even or odd such that (−1)n−1 = δ. If we define Ak and
Bk (0 ≤ k ≤ n−1) as in the proof of Theorem 3.1 (so in particular An−1 = c
and Bn−1 = d) and ω by the equation

ξ0 =:
An−1ω + An−2

Bn−1ω + Bn−2
, (3.20)

then this is equivalent to

δθ

B2
n−1

= ξ0 − An−1

Bn−1
=

An−2Bn−1 − An−1Bn−2

Bn−1(Bn−1ω + Bn−2)
=

(−1)n−1

Bn−1(Bn−1ω + Bn−2)
(3.21)

or - in other words -
ω =

Bn−1 − θBn−2

θBn−1
> 0. (3.22)

Equation (3.20) may be rewritten as

ξ0 = [a0, a1, . . . , an−1, ω]. (3.23)

Since θ < 1
2 we have ω > 1. Now we may develop ω into a regular continued

fraction
ω =: [an, an+1, . . .]

with an ≥ 1. By Proposition 3.1 it follows that

ξ0 = [a0, a1, . . . , an−1, an, . . .], (3.24)

hence c
d = An−1

Bn−1
is an approximating fraction for ξ0. �

3.4 The Algorithm

First we will show a trick that reduces the determination of the prime fac-
tors to the calculation of the period of a certain number theoretic function.
Namely, assume x is coprime to n and define the exponential function (with
base x) modulo n:

fn(a) := xa(mod.n).

It is well-known that the sequence {fn(a)}a∈IN0 is periodic. The length r of
the period is called ”the period of x(mod.n)”. Assume r is even. Then (by
Fermat’s Little Theorem) we have that

44 3 Factorization with Quantum Computers: Shor’s Algorithm

(xr/2)2 = 1(mod.n)

and hence
(xr/2 − 1)(xr/2 + 1) = 0(mod.n). (3.25)

This means that (unless xr/2 = ±1(mod.n)), then at least one of the terms
xr/2±1 must have a nontrivial factor in common with n. (Note that xr/2 = 1
would be the case if r/2 were already the period or a multiple of it, that is
why in the algorithm it will be important to really find the genuine period
and not a multiple of it.) So as soon as we have determined the period r, we
have a good chance of finding a factor of n by computing (by the Euclidean
algorithm, e.g.) the numbers gcd(xr/2 ± 1, n). So our goal must be to deter-
mine efficiently the period of exponential functions modulo n (where n is the
number to be factorized).
Now we are prepared for presenting Shor’s factorization algorithm in detail.
Let n = pq (p, q prime) be the number to be factorized.

Shor’s Factorization Algorithm

– Choose a number d with small prime factors such that 2n2 ≤ d ≤ 3n2.
– Choose a random integer x that is coprime to n.
– Repeat the following steps log d times using the same x every time:

– Create a quantum memory register of 2d non-negative integers modulo
n and partition it into two halves called reg1 and reg2. For the state of
the whole register we will write the ket vector |reg1, reg2〉.

– Load reg1 with the integers 0, 1, . . . , d − 1 and reg2 with zeroes at all
places, afterwards normalize the register such that we may write (with
a little abuse of notation) the state of the whole register as ket vector

|ψ〉 =
1√
d

d−1∑
a=0

|a, 0〉.

– Perform the transformation x �→ xa(mod.n) (using quantum parallelism)
on each (non-normalized) number in reg1 and place the results to the
corresponding places in reg2. Denote by r the period of the above trans-
formation. Then the state of the (normalized) complete register becomes

|ψ〉 =
1√
d

d−1∑
a=0

|a, xa(mod.n)〉.

– Measure the content of reg2 by the Hermitian operator A. Then this
collapses to some k and has the effect of projecting out the state of reg1 to
be a superposition of exactly those values of a for which xa = k(mod.n).
Hence the state of the complete register is

|ψ〉 =
1

#M

∑
a′∈M

|a′, k〉,

where M := {a′ : xa′
= k(mod.n)}.

3.4 The Algorithm 45

– Compute the discrete (fast) Fourier transform of the projected state in
reg1 and put this result back to reg1. This maps the projected state in
reg1 into a superposition

|ψ〉 =
1

#M

∑
a′∈M

1√
d

d−1∑
h=0

e2πia′h/d|h, k〉.

– Now the Fourier transform in reg1 is a periodic function peaked at mul-
tiples of the inverse period 1/r. States corresponding to integer multiples
of 1/r and those close to them appear with greater probability ampli-
tudes than those that do not correspond to integer multiples of the in-
verse period. So in each step, we get a number h′ such that h′

d is near
to the multiple λ

r of the inverse period of the exponential map for some
λ ∈ IN . In order to estimate λ, one can compute the continued fraction
expansion of h′

d as long as the denominator is less that n and then retain
the closest such fraction as λ

r . If this is done sufficiently often, we have
enough samples λi that lead to a guess of the true λ and thus of r.

– Now that we know r, we can determine the factors of n (with high proba-
bility) as demonstated at the beginning of this section.

We remark that of course (with rather low probability) Shor’s algorithm can
fail. Such counterexamples are easily constructed. But they represent rather
untypical cases.
Furthermore, instead of using the classical (fast) Fourier transform, there
are also quantum algorithms for the Fourier transform, which make Shor’s
algorithm working still faster in practice, but not to such an extent that
the linear order of complexity is even ameliorated. Seifert (2001) suggests
an approach where, in contrast to the above-mentioned algorithm, he uses
simultaneous diophantine approximation to reduce considerably the number
of qubits necessary.

4 Physical Random-Number Generators

4.1 Generalities

The doctrine in cryptology is that the algorithm of encryption is known to
the adversary (Eve) and that the only thing that is kept secret is the key,
which normally is a bitsequence or a sequence of natural numbers or el-
ements of a finite ring (e.g. a residue ring or a finite field). Mostly, such
key sequences are produced by an algorithmic generator (i.e., they are so-
called pseudo-random numbers), since these offer the following benefits: the
sequence of numbers can be reproduced for debugging and testing; no special
hardware is necessary; a large quantity of random numbers can be produced
in a short time. In Chapter 7, we will provide several tests of ”randomness”
of such pseudo-random sequences. However, there is no practically imple-
mentable ”universal” test of randomness: every test procedure just measures
a certain aspect of ”non-regularity”. If one wants to have genuine random
numbers, then they have to be produced by a physical device. A very drastic
drawback of classical pseudo-random generators has been pointed out in the
paper entitled ”Random numbers fall mainly in the planes” by Marsaglia
(1968). Possible physical random sources are electronic noise produced by a
semiconducting diode (Richter (1993)) or the impulses of a Geiger counter
in connection with a radioactive source (Inoue et al. (1983)). In the latter
paper, the authors propose a hardware implementation of this device, the
radioactive source consisting of a PG-508 pulse generator. Another device
using a Geiger counter has been described in Nisley (1990), the RM-60 Micro
Roentgen Radiation Monitor from Aware Electronics. Finally, there is HOT
BITS (see Walker (1996)), a source of random bits available via the Internet,
which uses beta radiation from the decay of Krypton-85.
The output of such a generator (which in the latter case leads directly to a
Poisson (for the number of events) resp. exponential (for the inter-occurence
waiting times) distribution) has to be processed further in order to obtain
standard uniform random numbers (digits, or reals in [0, 1]). Since the pa-
rameters of the distribution of the data is not known exactly, only a small
amount of this information is used (usually the last digit), to be on the safe
side, and so the yield of this method is relatively small. However, physically
generated random numbers are expensive and can not be produced in too

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 47-55, 2004.
© Springer-Verlag Berlin Heidelberg 2004

48 4 Physical Random-Number Generators

high quantities. For example, the HOT BITS hardware produces only about
240 bits per second.
Modifying an idea of von Neumann (1963), used to extract unbiased bits from
a sequence of biased ones by comparison of two subsequent bits, we propose
to obtain random numbers in [0, 1] from a sequence X0, X1, X2, . . . of inde-
pendent exponentially distributed data by using Un := X2n

X2n+X2n+1
. This gives

us one real number for every two data values instead of only two bits, con-
siderably increasing the output. If the distribution of the Xn is exponential,
the Un are uniform in [0, 1]. The question of the ”rate of disappearing” of
the bias (so-called extraction rate) is addressed in Section 4.3, in particular
for rational biases b. It turns out that the size of b does not influence the
extraction rate, but that the latter is solely determined by the arithmetic
properties of b. On the other hand, the extraction rate can be shown to be 0
in Lebesgue-almost all cases.
In the practical implementation of this method we have to take into account
that the exponential times Xn can only be measured up to a certain precision.

4.2 Construction of Uniformly Distributed Random
Numbers from a Poisson Process

In this section, we will consider the output of a Geiger counter as source of
randomness. The other examples mentioned in the previous section are of a
similar nature. If the number of impulses during a fixed amount of time is
counted, a variable with a Poisson distribution is the raw material that has
to be processed further in order to obtain unbiased random bits. Usually, the
length t0 of the time interval is chosen large with respect to the mean time
1/θ between two impulses; then the number N of counts during this interval
has a Poisson distribution πλ with λ = t0θ. In most cases, the last digit X in
the binary representation of N is used as an approximation for a uniformly
distributed random bit.
Another method (see Inoue et al. (1983)) makes use of the random waiting
time T between two consecutive impulses, which obeys an exponential dis-
tribution εθ. Clearly, if the intensity θ > 0 were known exactly, one could
obtain a uniformly distributed random variable U just by the usual transform
method U := exp(−θT). But θ not being known exactly enough to guarantee
that U is ”sufficiently” uniform, it has to be estimated. One can use two
consecutive waiting times produced by the Geiger counter, one so to say to
estimate θ and the other one to obtain a uniform random variable.
The following lemma is easy:

Lemma 4.1. Let X and Y be independent random variables with common
exponential distribution εθ (where θ > 0). Then

4.2 Construction of Uniformly Distributed Random Numbers 49

U :=
X

X + Y

obeys a uniform law on [0, 1].

Therefore if the raw material is a stream of independent exponential random
times Xn (n ∈ IN), a sequence of independent uniform variables can be
obtained by setting Un := X2n/(X2n + X2n+1).
Unfortunately the waiting time between two impulses of the Geiger counter
is not measured as a real number, but only in multiples of the length Δ of
the clock cycle (w.l.o.g. we may assume Δ = 1). If two impulses occur during
one clock cycle, then they are counted as one. Hence the n-th observation of
an impulse occurs at the time S′

n defined recursively by S′
0 := 0,

S′
n := min{k ∈ IN : Nk ≥ NS′

n−1
+ 1},

where the Poisson process {Nt}t≥0
1 indicates the number of impulses up

to time t. Instead of the sequence {Xn}n≥1 of exactly exponentially dis-
tributed waiting times between two impulses, we can only observe the se-
quence {X ′

n}n≥1, where X ′
n := S′

n − S′
n−1.

Proposition 4.1. The X ′
1, X

′
2, . . . are i.i.d. such that X ′

n − 1 obeys a geo-
metric distribution with parameter 1 − exp(−θ).

Proof: Let {Ft}t≥0 denote the canonical filtration of the Poisson process
{Nt}t≥0. Then S′

1 < S′
2 < . . . is a sequence of stopping times. Assume n ≥ 2.

Since the Poisson process is stationary with independent increments, the
process {N ′

t}t≥0 with N ′
t := Nt+S′

n−1
−NS′

n−1
is again a Poisson process with

parameter θ. Therefore the distribution of

X ′
n = S′

n − S′
n−1 = min{k ∈ IN : N ′

k ≥ 1}

is the same as that of X ′
1. The latter law can easily be calculated to be the

geometric distribution with parameter

P (X ′
1 − 1 = 0) = P (X1 < 1) = 1 − exp(−θ).

1 A stochastic process {Nt}t≥0 is called a Poisson process with intensity λ > 0 if
Nt obeys a Poisson distribution with parameter λt (t > 0). This is equivalent to
the fact that for the ”jump times”

Γ0 = 0 < Γ1 < Γ2 < . . .

(where Γk := inf{t ≥ 0 : Nt ≥ k}) we have that the ”inter-occurence times”
Γk+1 − Γk are i.i.d exponentially distributed random variables as

P (Γk+1 − Γk > x) = e−λx

for x ≥ 0.

50 4 Physical Random-Number Generators

Furthermore, the process {N ′
t}t≥0 and hence the random variable X ′

n is inde-
pendent of FS′

n−1
. On the other hand, the random variables X ′

1, X
′
2, . . . , X

′
n−1

are FS′
n−1

-measurable and hence independent of X ′
n. �

Denote by FX the distribution function of a random variable X .

Theorem 4.1. Let X ′ − 1, Y ′ − 1 be independent geometric random vari-
ables with parameter θ′ = 1 − exp(−θ) and denote by U a random variable
distributed uniformly on the interval [0, 1]. Then U ′ := X′−0.5

X′+Y ′−1 satisfies

1
2

tanh
(θ

2
) ≤ ||FU ′ − FU ||∞ ≤ 1 − exp

(−θ

2
)
.

Proof: The lower bound follows from the observation that FU is continuous
at 1

2 whereas FU ′ has a jump of size P{U ′ = 1
2} =

∑
n P{X ′ = n}P{Y ′ =

n} =
∑∞

n=0 θ′2(1 − θ′)2n = θ′
2−θ′ = 1−exp(−θ)

1+exp(−θ) = tanh
(

θ
2

)
.

We will now assume w.l.o.g. that X ′ and Y ′ are of the form X ′ = �X� and
Y ′ = �Y � with X , Y independent and with exponential distribution with
parameter θ. Let U := X/(X + Y). Since the distribution of U ′ is symmetric
about 1

2 it is easy to see that for the upper bound it is sufficient to show
|FU ′ (t) − t| ≤ 1 − exp(−θ/2) only for t ∈]0, 1

2]. For such t we have

FU ′(t) − t = E
(
1[0,t](U ′) − 1[0,t](U)

)
=

∑
m,n∈IN

E
([

1[0,t]

(m + 0.5
m + n + 1

) − 1[0,t](U)
]

·1{m<X<m+1, n<Y <n+1}
)

= S+ − S−,

where

S+ =
∑

m+0.5
m+n+1≤t, m+1

m+n+1>t

P (m < X < m + 1, n < Y < n + 1,
X

X + Y
> t)

and

S− =
∑

m+0.5
m+n+1>t, m

m+n+1<t

P (m < X < m + 1, n < Y < n + 1,
X

X + Y
≤ t).

The last equality follows from the fact that the random variable in the ex-
pectation takes only the values −1, 0, or 1, and all summands with either

m+1
m+n+1 ≤ t or m

m+n+1 ≥ t vanish, since the square]m, m + 1[×]n, n + 1[lies
completely on one side of the line { x

x+y = t} in these cases.
We now collect the summands in S± that belong to the same m. Let
a := (1 − t)/t ≥ 1; then x

x+y > t if and only if ax > y.

4.2 Construction of Uniformly Distributed Random Numbers 51

From this we obtain

S+ =
∞∑

m=0

P (X < m + 1, Y > nm, aX > Y)

and

S− =
∞∑

m=0

P (X > m, Y < nm, aX ≤ Y),

where nm is the smallest n ∈ IN with m+0.5
m+n+1 ≤ t. Considering a single

summand we have

P (X > m, Y < nm, aX ≤ Y)
≤ P (m < X < m + (1/2), am < Y < nm)
= c · P (m < X < m + 1, am < Y < nm)

with

c := P (m < X < m + (1/2))/P (m < X < m + 1) =
(
1 + exp

(−θ

2
))−1

.

In order to prove the latter inequality we have used the fact that the density
of P is a decreasing function of x+ y and an elementary geometric argument
in the m − nm-plane. A similar argument yields

P (X < m+1, Y > nm, aX >Y) ≤ c·P (m < X < m+1, nm < Y < a(m+1)).

Summing up, we obtain

S+ + S− ≤
∞∑

m=0

c · P (m < X < m + 1, am < Y < nm)

+ c · P (m < X < m + 1, nm < Y < a(m + 1))

= c ·
∞∑

m=0

P (m < X < m + 1, am < Y < a(m + 1))

= c ·
∞∑

m=0

exp(−θ(a + 1)m)(1 − exp(−θ))(1 − exp(−aθ))

=
(1 − exp(−θ))(1 − exp(−aθ))

(1 + exp(−θ/2))(1 − exp(−(a + 1)θ))
.

But since 1 − exp(−aθ) ≤ 1 − exp(−(a + 1)θ)), we finally get the bound

|FU ′ (t) − t| = |S+ − S−| ≤ S+ + S− ≤ 1 − exp
(−θ

2
)
,

and this proves Theorem 4.1. �

The upper and lower bounds 1 − exp −θ
2 ≤ θ

2 and 1
2 tanh θ

2 ≈ θ
4 in Theorem

4.1 differ by a factor of approximately 2. As one can see from numerical
experiments, the lower of these is the true value, but the proof of this fact is
more complicated.

52 4 Physical Random-Number Generators

4.3 *The Extraction Rate for Biased Random Bits

In this section, it will make things a little simpler (e.g., as we will see, we
can work with expectations) if we replace IB = {0, 1} by B := {1,−1}. Since
there will be no danger of misunderstanding, also the elements of B will be
called (random) ”bits”.
We want to investigate the following question: Given n i.i.d. random bits with
common bias b (i.e. P (X1 = 1)−P (X1 = −1) = E(X1) = b ∈]0, 1[(w.l.o.g.)),
how is it possible to construct from them an ”as unbiased as possible” random
bit? It turns out that a good method is to multiply2 the Xi ∈ B, for if

Pn :=
n∏

i=1

Xi,

then the bias of Pn turns out to be only bn, i.e. P (Pn = 1)−P (Pn = −1) = bn.
One may ask if there are functions f : Bn → B that behave better (in the
sense of bias reduction) than multiplication. Let us define, for f and b as
defined before, the quantity

ξf,n(b) := |E(f(X1, X2, . . . , Xn))|

and
Ξn(b) := min

f :IBn→IB
ξf,n(b).

The relation ξ·,n(b) = bn (as mentioned before) can be interpreted as fol-
lows: For each new (independent b-biased) bit source Xn+1 combined with
the sources X1, X2, . . . , Xn, the multiplication-function ”extracts” another
factor b in the output bit Pn+1 (compared with Pn). So if we replace the
multiplication-function by an (asymptotically (as n → ∞)) optimal function
f , we should have at least the extra multiplicative factor b for every step
n → n + 1 (i.e. by taking one additional bit source). Therefore, we define the
so-called extraction rate of b by

Ξ(b) := lim
n→∞

n
√

Ξn(b).

The extraction rate can be interpreted as the optimal asymptotic multiplica-
tive effect of each new input bit source on the resulting bias of the output
bit. Or - in other words - it is the asymptotical (as n → ∞) speed of the
diminution of the bias per new random bit source, when the final output
bit is produced by adding (mod.2) (in IB) n independent biased random
bit sources. It can be shown that for Lebesgue-almost all b ∈]0, 1[we have
Ξ(b) = 0 (see Näslund, Russell (2001), Theorem 21). For rational b we have
the following:
2 If we identify B and IB in the natural way, then multiplication in B corresponds

to addition mod.2 in IB.

4.3 *The Extraction Rate for Biased Random Bits 53

Theorem 4.2. If b ∈ IQ, b = r
s , r, s ∈ IN , r, s relatively prime, then Ξ(b) = 1

s .

So interestingly enough, it is not the size of b, but rather its arithmetic
properties that determine its extraction rate!
Proof of Theorem 4.2: 1. We first prove that

Ξn(b) ≥ 1
sn

. (4.1)

Let us fix some notation. For a subset C ⊂ Bn, define its weight by

w(C) := P ((X1, X2, . . . , Xn) ∈ C),

and put

f(X1, X2, . . . , Xn) := 2(1(C)(X1, X2, . . . , Xn) − 1
2
).

Now consider a collection (subset) C ⊂ Bn with w(C) = 1+δ
2 , where |δ| is

the bias of f . W.l.o.g. we may suppose that (−1,−1, . . . ,−1) �∈ C. Then we
may calculate

w(C) =
1 + δ

2

=
n∑

i=1

ti(
r

s
)i(1 − r

s
)n−i

=
1
sn

n∑
i=1

tir
i(s − r)n−i

for some integers ti ∈ {0, 1, . . . ,
(
n
i

)}, or - equivalently -

sn(1 + δ) = 2
n∑

i=1

tir
i(s − r)n−i.

Since δ �= 0 and b > 0 we have that r > 1 is a divisor of the right-hand side of
the above equality. Furthermore, we have supposed that r and s are relatively
prime. So the left-hand side must be an integer (since the right-hand side is)
and inequality (4.1) follows.
2. Now we turn to the other direction. We will construct a family of functions
fn : Bn → B with the property that

n
√
|E(fn(X1, X2, . . . , Xn))| → 1

s
. (4.2)

For this, we will prove the following lemma, which is also of some independent
interest. Then (4.1) and (4.2) will yield the result of Theorem 4.2. �

54 4 Physical Random-Number Generators

Lemma 4.2. If b is as in Theorem 4.2, we have that

Ξ(b) ≤ 1
s
.

More precisely, for n > 2r + 1 we obtain

Ξn(b) ≤ 2r(s − r)2

sn

and there exists a (deterministic) polynomial-time algorithm for finding an
optimal f , such that

ξf,n(b) ≤ 2r(s − r)2

sn
.

Proof: Define q := s− r, so that we have q
s + r

s = 1. Since we have supposed
b > 0, it follows that r > q. Let B(n)

i be the i-th level of Bn, i.e. those elements
of Bn with Hamming weigth (number of ones) i. Let P

(n)
i (b) denote the

probability that an element of Bn is equal to some fixed element of x ∈ B(n)
i .

This probability is indeed independent of the specific x and given by

P
(n)
i (b) = bi(1 − b)n−i.

Hence in our case, we have

P
(n)
i (b) =

riqn−i

sn
.

We want to find collections Cn ⊂ Bn such that snw(Cn) is ”close” to sn

2 .
Then for the function

fn(X1, X2, . . . , Xn) := 2(1(Cn)(X1, X2, . . . , Xn) − 1
2
)

we will have that E(fn(X1, X2, . . . , Xn)) will be close to 0.
For this construction we proceed as follows: Define an initial collection

C̃n := B(n)
n ∪ B(n)

n−1 ∪ B(n)
n−2 ∪ T,

where T is a maximal subset of
⋃

i<n−2 B(n)
i for which |B(n)

j \T | ≥ r − 1
(for 1 ≤ j ≤ n − 3) and snw(C̃n) ≤ sn

2 . Now let us adjust this collection
suitably to bring its weight (multiplied by sn) closer to sn

2 . Since r > q and
P

(n)
i (b) < P

(n)
j (b) (for i < j) and by the maximality of T we get

|snw(C̃n) − �sn

2
�| < snP

(n)
n−2(b) = rn−2q2.

Now consider the cyclic group ZZrn−2q2 and denote by π : ZZ → ZZrn−2q2 the
canonical projection. Since r and q are relatively prime, it follows that for

4.3 *The Extraction Rate for Biased Random Bits 55

every i > 2, the element π(rn−iqi) has order ri−2 in ZZrn−2q2 , so that we
obtain the following chain (or ”tower”) of subgroups of ZZrn−2q2 :

0 = 〈π(rn−2q2)〉 ⊂ 〈π(rn−3q3)〉 ⊂ . . . ⊂ 〈π(rqn−1)〉

(〈x〉 denotes the cyclic subgroup generated by x). All the groups in the above
chain have index r in the next one and the last one (〈π(rqn−1)〉) has index
rq2 in ZZrn−2q2 . Thus the group 〈π(rqn−1)〉 can be used to approximate every
element of ZZrn−2q2 to within an additive error of rq2. In particular for Δ :=
π(� sn

2 � − snw(C̃n)), there exists an element Δ′ ∈ 〈π(rqn−1)〉 such that

Δ − Δ′ ∈ {π(0), π(1), . . . , π(rq2 − 1)}.

On the other hand, we of course may write Δ′ =: cπ(rqn−1), so by well-known
algebraic facts (see Näslund, Russell (2001), p. 308) one has an equation

Δ′ =
n−3∑
i=1

tiπ(riqn−i) ∈ 〈π(rqn−1)〉

with integers ti ∈ {0, 1, . . . , r − 1}. As r > q, we may ”lift” this equation to

�sn

2
� =

n−3∑
i=1

tir
iqn−i − mrn−2q2 + w(C̃n)sn + E

(where m ≤ nr and E ∈ {0, 1, . . . , rq2−1} represents the error term). Now, if
we add ti elements of B(n)

i to C̃n and, on the other hand, remove m elements
of B(n)

n−2 from C̃n (which is possible as long as m <
(

n
n−2

)
, i.e. r < n−1

2), we
indeed obtain a new collection Cn with

snw(Cn) − �sn

2
� < E.

Dividing this equation by sn yields

Ξn(b) ≤ 2rq2

sn

and the result follows (since each step of the above-described algorithm can
be carried out in polynomial time).�

5 Pseudo-random Number Generators

5.1 Linear Feedback Shift Registers

In contrast to Chapter 4, where we discussed genuine physical random num-
ber generators, here we will deal with so-called pseudo-random number gen-
erators. These are determinsitic algorithms that produce an output which
behaves ”more or less” like random numbers. The advantage is that like that,
much more data can be generated per time unit than with physical devices.
On the other hand, pseudo-random numbers never have the quality of gen-
uine random numbers. There is a definition of ”perfect pseudo-randomness”
in the sense that, loosely speaking, a source is perfectly pseudo-random if it
can not ”efficiently” be distinguished from genuine random numbers. We will
deal with that in more detail in Section 5.3. However, this test is not practi-
cally implementable. In reality, one can only test for finitely many necessary
conditions for a source to be considered as ”sufficiently random”. Normally,
one tries to generate a uniform random variable U on the interval [0, 1[(more
precisely: one approximates U by a discrete uniform distribution on the set
{ k

N : 0 ≤ k ≤ N − 1}, where N is chosen sufficiently large).
In the sequel, w.l.o.g. we will interpret (pseudo-)random numbers as bitse-
quences {xi}i≥0 = {x0x1 . . .} (xi ∈ IB = {0, 1}).
A catalog of some ”minimal” requests for pseudo-random generators was es-
tablished 1967 by S. Golomb. For this, we need some preparation. As a com-
puter has only finitely many memory places, every pseudo-random sequence
generated by a computer is eventually periodic. In the sequel, we consider
only periodic pseudo-random number generators. Let p be the period of the
pseudo-random number generator, i.e., the smallest natural number with the
property xi+p = xi (∀i ≥ 0). A run is here, by definition, a sequence of
identical elements of IB; we will speak of a block, resp. a gap, if it is a run
of ones, resp. zeroes. Let A(k) resp. D(k) be the number of matches, resp.
non-matches, of {xi}i≥0 and {xi+k}i≥0 counted over a whole period:

A(k) := |{i ∈ {0, 1, . . . , p − 1} : xi = xi+k}|,

S(k) := |{i ∈ {0, 1, . . . , p − 1} : xi �= xi+k}|.

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 57-75, 2004.
© Springer-Verlag Berlin Heidelberg 2004

58 5 Pseudo-random Number Generators

The autocorrelation AC(k) of the periodic sequence {xi}i≥0 is defined as

AC(k) =
A(k) − D(k)

p
.

If k is a multiple of the period length p, then one speaks of ”in-phase”-
autorcorrelation; in this case we always have AC(k) = 1. In the other case,
AC(k) is called ”out-of-phase”-autocorrelation; it lies always between −1 and
1. Now Golomb’s conditions are the following:
(G1) The number of zeroes and the number of ones per period are p/2 (if p
is even) and (p± 1)/2 (if p is odd) (i.e. zeroes and ones appear with approx-
imately the same probability).
(G2) In a cycle, half of the runs have length 1, a quarter of them length 2,
an eighth length 3, Half of the runs of a certain length are blocks, the
other half gaps. (This condition says that, e.g., after 01, the zero again has
the same probability as the one, etc.)
(G3) The out-of-phase-autocorrelation AC(k) has the same value for all k.
(This can be interpreted as follows: If one counts the number of matches
between a sequence and its shift by k places, one does not obtain any in-
formation about the period p of this sequence (with the exception if k is a
multiple of p).)
We now consider bitsequences that are generated by so-called linear feedback
shift registers (LFSR). The advantage of LFSR is that they are very easily
implementable in hardware and work very fastly. An LFSR of length n has
a vector of n places of memory. At the beginning, the initial state vector
(x0, x1, . . . , xn−1) ∈ IBn is stored. The most important part of an LFSR is
the so-called (linear) feedback function:

f : IBn � (x0, x1, . . . , xn−1) �→ f(x0, x1, . . . , xn−1) =
n−1∑
i=0

cixi ∈ IB,

where c0, c1, . . . , cn−1 ∈ IB are fixed (built-in) parameters. After the first
step, the LFSR will give the leftmost bit x0 as output, delete this bit from
its memory place, shift the contents of all the other memory places one place
to the left, and put the value xn = f(x0, x1, . . . , xn−1) in the rightmost
memory place. (We note that instead of bits, one can work with elements
of an arbitrary finite ring. Then the classical linear congruence generators
are just shift registers of length n = 1 over a residue ring.) W.l.o.g. we may
assume c0 = 1, for otherwise one could replace the LFSR by a LFSR of length
n−1. An output sequence of an LFSR will be called a pseudo-noise sequence
(PN-sequence) if it has the (maximal possible) period p = 2n − 1. Since a
LFSR generating a PN-sequence must assume all its possible states and since
the output sequence is uniquely determined by the initial state, PN-sequences
are automatically periodic. In the sequel, we want to investigate which LFSR
generate PN-sequences. For this, we introduce the important notion of the

5.1 Linear Feedback Shift Registers 59

characteristic polynomial (or recursion polynomial) of a LFSR: If one puts
cn := 1, then the polynomial

f(z) :=
n∑

i=0

ciz
i

is called the characteristic polynomial (or recursion polynomial) of the LFSR.
With Θ(f) we denote the set of all possible output sequences of the LFSR
with characteristic polynomial f :

Θ(f) = {{xi}i≥0 : xk+n =
n−1∑
i=0

cixk+i (k ≥ 0)}.

One sees easily that Θ(f) is a vector space of dimension n over the field IB. If
f(z) =

∑n
i=0 ciz

i denotes a polynomial with coefficients in IB, then we define
the corresponding dual polynomial f∗(z) by

f∗(z) = znf(1/z) =
n∑

i=0

ciz
n−i.

Clearly, f∗∗(z) = f(z) and (f ·g)∗(z) = f∗(z) ·g∗(z). For the output sequence
{xi}i≥0 we consider the generating function

S(z) =
∞∑

i=0

xiz
i

(interpreted as formal power series).

Lemma 5.1. If one puts

τ(z) :=
n−1∑
j=0

(
j∑

�=0

cn−�xj−�)zj ,

then it follows that

S(z) =
τ(z)
f∗(z)

.

Proof:

S(z)f∗(z) = (
∞∑

k=0

xkzk)(
n∑

�=0

cn−�z
�)

=
∞∑

j=0

(
min{j,n}∑

�=0

cn−�xj−�)zj

=
n−1∑
j=0

j∑
�=0

cn−�xj−�z
j +

∑
j≥n

n∑
�=0

cn−�xj−�z
j

60 5 Pseudo-random Number Generators

= τ(z) +
∑
j≥n

(
n∑

i=0

cjx(j−n)+i)zi

= τ(z).�

As |Θ(f)| = 2n and since there are exactly 2n polynomials of degree < n
over IB, one obtains (by identifying the output sequence with its generating
function) the following:

Corollary 5.1.

Θ(f) = { τ(z)
f∗(z)

: deg τ(z) < n}.

Lemma 5.2. Suppose {xi}i≥0 ∈ Θ(f), {yi}i≥0 ∈ Θ(g). Then

{xi + yi}i≥0 ∈ Θ(lcm(f, g)).

Proof: Based on Corollary 5.1, we write S(z) = α(z)/f∗(z), T (z) =
β(z)/g∗(z) (where deg α(z) < deg f(z), deg β(z) < deg g(z)). Furthermore,
we put h = lcm(f, g) and define the polynomials u and v by h = u · f and
h = v · g. As

S(z) + T (z) =
α(z)
f∗(z)

+
β(z)
g∗(z)

= (α(z)u∗(z) + β(z)v∗(z))/h∗(z),

and, on the other hand, α(z)u∗(z) and β(z)v∗(z) both have lower degree than
h(z), it follows that S(z) + T (z) ∈ Θ(h). �

From the theory of finite fields, the following is known:

Lemma 5.3. (i) For every polynomial f(z) with f(0) = 1 there exists an
m ∈ IN such that f(z) is a divisor of zm + 1. The smallest such m is called
the period of the polynomial f(z).
(ii) If n := deg f(z) and if f(z) is irreducible, then the period of f(z) divides
2n − 1. If the irreducible polynomial f(z) has the (maximal) period 2n − 1,
then the polynomial f(z) is called primitive.
(iii) The number of primitive irreducible polynomials of degree n is given by
ϕ(2n − 1)/n (ϕ denoting the Euler totient function).

Lemma 5.4. If the polynomial f(z) has period m and degree n and if
{xi}i≥0 ∈ Θ(f), then the period of {xi}i≥0 divides m.

Proof: Let g(z) be a polynomial such that

zm + 1 = f(z) · g(z) (5.1)

and with degree m − n. If on both sides of (5.1) one passes to the dual
polynomial, one obtains

5.1 Linear Feedback Shift Registers 61

zm + 1 = f∗(z) · g∗(z).

By Lemma 5.1 there is a polynomial τ(z) of degree < n such that

S(z) =
τ(z)
f∗(z)

=
τ(z) · g∗(z)

1 + zm

= τ(z) · g∗(z) · (1 + zm + z2m + . . .).

Since deg g∗(z) = m−n, it follows that deg (τ(z) · g∗(z)) < m. So the period
of S(z) divides m. �

Lemma 5.5. If the irreducible polynomial f(z) has period m and degree n
and if {xi}i≥0 ∈ Θ(f), then {xi}i≥0 has period m.

Proof: Let p denote the period of {xi}i≥0. By Lemma 5.4, p divides m. Hence

S(z) =
u(z)

1 + zp
(5.2)

for a suitable polynomial u(z) of degree < p. One the other hand, due to
Lemma 5.1 we have

S(z) =
τ(z)
f∗(z)

. (5.3)

Comparing (5.2) and (5.3) yields

(1 + zp) · τ(z) = u(z) · f∗(z)

and hence (by passing to the dual polynomial on both sides)

(1 + zp) · τ∗(z) = u∗(z) · f(z).

As f(z) is irreducible and τ∗(z) has degree < n, it follows that f(z) is a
divisor of zp + 1. Since f(z) has period m, we obtain that m divides p. But
as p is also a divisor of m (as seen before), the assertion follows. �

Lemma 5.6. If f(z) is a polynomial of degree n and if {xi}i≥0 ∈ Θ(f) is a
PN-sequence, then f(z) is irreducible.

Proof: From the theory of factorization in rings (here applied to rings of
polynomials), it follows that there exists an irreducible polynomial f1(z) with
positive degree n1 and a polynomial f2(z) such that f(z) = f1(z) · f2(z). By
Corollary 5.1 we have that 1/f∗

1 (z) ∈ Θ(f1), so by Lemmas 5.3(ii) and 5.4, the
period of 1/f∗

1 (z) divides 2n1−1. On the other hand 1/f∗
1 (z) = f∗

2 (z)/f∗(z) ∈
Θ(f), so 1/f∗

1 (z) must be a shift of {xi}i≥0 and thus have period 2n − 1. It
follows that n = n1, thus f(z) = f1(z). �

62 5 Pseudo-random Number Generators

So by Lemmas 5.5 and 5.6, we obtain the following theorem:

Theorem 5.1. The output sequence of a LFSR is a PN-sequence iff the char-
acteristic polynomial is primitive.

Due to Lemma 5.3(iii), there are thus exactly ϕ(2n − 1)/n different LFSR of
length n that generate PN-sequences.
One can show that LFSR that generate PN-sequences satisfy Golomb’s con-
ditions (G1)-(G3):
(G1): Since every state occurs exactly once per period and since the leftmost
bit always yields the next output bit, it follows that the number of ones, resp.
zeroes, per period is 2n−1, resp. 2n−1 − 1.
(G2): There are 2n−k−2 states whose leftmost k + 2 bits have the form
011 . . .10, resp. 100 . . .01. So gaps and blocks of length k ≤ n − 2 occur
exactly 2n−k−2 times per period. The state 011 . . .1 occurs exactly once. Its
successor state is 11 . . . 1, after which the state 11 . . .10 follows. Hence there
is no block of length n − 1 and 1 block of length n. By analogy, there exists
1 gap of length n − 1 and no gap of length n.
(G3): If {xi}i≥0 ∈ Θ(f), then also {xi+k}i≥0 ∈ Θ(f) and thus (since Θ(f) is
a vector space) {xi+xi+k}i≥0 ∈ Θ(f). The number of matches per period be-
tween {xi}i≥0 and {xi+k}i≥0 is equal to the number of zeroes of {xi+xi+k}i≥0

per period, which by (G1) has the value 2n−1−1. By analogy, the number of
non-matches is 2n−1. So the out-of-phase-autocorrelation assumes the value

AC(k) = − 1
2n − 1

(1 ≤ k < 2n − 1).

Of course, every finite bitsequence can be produced by an LFSR. The length
of the shortest such LFSR can be determined by the Berlekamp-Massey algo-
rithm (see Section 7.11) and is called the linear complexity of the bitsequence.
Non-linear filtering of PN-sequences can lead to high linear complexity (see
Kalouptsidis, Kolokotronis (2003)).

5.2 The Shrinking and Self-shrinking Generators

The shrinking generator consists of two LFSR over GF (2), an LFSR a =
(a(0), a(1), . . .) and a second one (called the selector) s = (s(0), s(1), . . .).
Now the output of the generator will be the x-sequence, which is a ”shrunken”
version of the a-sequence, in the sense that the element a(i) will be included
in the x-sequence if s(i) = 1, otherwise it will be discarded. In other (more
formal) words:

x(k) := a(ik),

where ik denotes the position of the k-th 1 in the selector sequence s. The
shrinking generator is easy to implement and has, as we will see, good statisti-
cal properties. First, we will investigate the period and the linear complexity

5.2 The Shrinking and Self-shrinking Generators 63

of the x-sequence. Let Ta, resp. |a|, denote the period, resp. length of the
LFSR a (and analogously for s and x).

Theorem 5.2. If a and s have primitive characteristic polynomials and if Ta

and Ts are relatively prime, then

Tx = (2|a| − 1)2|s|−1.

Proof: W.l.o.g. we may assume that

|a| > log2 |s|. (5.4)

Since the s-sequence has (due to the primitivity of its characteristic polyno-
mial) 2|s|−1 elements 1 in a full period, one observes that

x(i + j2|s|−1) = a(ki + jTs). (5.5)

Furthermore, if for any indexes k, k′ we have that a(k + jTs) = a(k′ + jTs)
for all j, then it follows that

Ta|k − k′. (5.6)

[Since the characteristic polynomial of a is primitive and since Ta and Ts are
relatively prime, it follows that the characteristic polynomial of the sequence
{a(k + jTs}j≥0 is also primitive, hence this sequence also has period Ta.]
Clearly, we have

Tx|Ta2|s|−1.

Since x(i + j2|s|−1) = x(i + Tz + j2|s|−1) for all i and j, together with (5.5)
and (5.6) we obtain that

Ta|ki+Tx − ki (5.7)

for all i. Or - in other words - for every i there exists a ji such that

ki+Tx = ki + jiTa. (5.8)

Replacing i by i + 1 in (5.8) yields

ki+1+Tx = ki+1 + ji+1Ta. (5.9)

Now we subtract (5.8) from (5.9), giving

ki+Tx+1 − ki+Tx = ki+1 − ki + (ji+1 − ji)Ta (5.10)

for all i. On the one hand ki+Tx and ki+Tx+1, but on the other hand, ki and
ki+1 are also positions of consecutive ones in the s-sequence. So if ji+1−ji �= 0,
we would have at least Ta consecutive zeros somewhere in the s-sequence,
which by assumption (5.4) has been ruled out. So ji+1 = ji and hence

ki+Tx+1 − ki+Tx = ki+1 − ki (5.11)

64 5 Pseudo-random Number Generators

for all i, which yields that the subsequences of s starting at the elements
s(ki), resp. s(ki + Tx), are identical. This is only possible if Ts|ki+Tx − ki,
hence the number of elements in the s-sequence between s(ki) and s(ki +Tx)
is a multiple of the period 2|s|−1 of s. However, then the number of ones in
this segment is a multiple of 2|s|−1. But on the other hand, this number is
also Tx, so there exists a t ∈ IN such that

Tx = t2|s|−1. (5.12)

Relation (5.5) implies

a(k0) = x(0) = x(jTx) = x(jt2|s|−1) = a(k0 + jtTs) (5.13)

for all j. Thus Ta|tTs and hence (since Ta and Ts are supposed to be relatively
prime) Ta|t, which, by (5.12), entails that Ta2|s|−1|Tx. �

For the linear complexity L of the x-sequence, we get the following estimate:

Theorem 5.3. Under the hypotheses of Theorem 5.2, we have

|a|2|s|−2 < L < |a|2|s|−1.

Proof: 1. Upper bound for L: In order to find an upper bound for L, we
want to look for a polynomial p(.) such that (by a little abuse of notation)
p(z) = 0 for all possible outcomes of the sequence x (i.e., the coefficients
of p(z) =

∑n
k=0 ciz

i represent the linear relation
∑n

k=0 cixi satisfied by the
elements of the x-sequence). Let x[s] denote the sequence {x(j2|s|−1)}j≥0.
From (5.5), the elements of this sequence are all of the form a(i + jTs).
By the hypothesis that Ta and Ts are relatively prime, the sequence just
described must have the same linear complexity as the original a-sequence,
so it has to satisfy a polynomial equation Q(.) = 0 of degree |a|. But then
also the sequence x[s] has to satisfy this equation, i.e., Q(x[s]) = 0 (with a
little abuse of notation). Now define P (z) := Q(z2|s|−1

). The polynomial P
satisfies P (z) = 0 and has degree |a|2|s|−1, which is an upper bound for L.
2. Lower bound: Denote by M(z) the minimal polynomial for the sequence
x. Since Q(x[s]) = 0, it follows that the polynomial M(z) is a divisor of the
polynomial

Q(x[s]) = Q(z2|s|−1
) = Q(z)2

|s|−1
,

hence
M(z) = Q(z)t

for some t ≤ 2|s|−1. Now assume that the lower bound asserted in Theorem
5.3 is not true and let t ≤ 2|s|−2. Then M(z) divides Q(z)2

|s|−2
. Since Q(z)

is an irreducible polynomial of degree |a|, it divides the polynomial 1 + zTa ,
so it follows that the polynomial M(z) divides the polynomial

(1 + zTa)2
|s|−2

= 1 + zTa2|s|−2
,

5.3 Perfect Pseudo-randomness 65

which entails that the period of the x-sequence can be at most Ta2|s|−2. But
this is a contradiction to Theorem 5.2, hence we must indeed have t > 2|s|−2.
�

The next theorem, which we state without proof, gives statistical properties
of the shrinking generator. The general assertion is that one can show that
the distribution of the output sequence of a shrinking generator is ”near”
to the distribution of a genuine unbiased random sequence in the following
sense:

Theorem 5.4. Consider a shrinking generator as above. Denote by U a gen-
uine unbiased random sequence of length n. Let b ∈ {0, 1, ∗}n be any template.
Then

|E(templateb(X(n)) − E(templateb(U)| = O(
n

2|a|
).

Furthermore, assume x(1) and x(2) are two elements of the x-sequence with
distance �. Then the correlation between x(1) and x(2) is bounded by O(�

2|a|).

(See Coppersmith et al. (1994), Theorem 13 and Corollary 14).
A concept related to the shrinking generator is the so-called self-shrinking
generator. There, one works with only one LFSR and consecutive (non-
overlapping) pairs of its output bits. If the first bit of the pair is a 1, then
the second bit of the pair is included in the x-sequence (output) of the self-
shrinking generator, otherwise the pair is dicarded. For more information
about the self-shrinking generator see Meier, Staffelbach (1995) and Black-
burn (1999). In the latter paper, the maximum linear complexity conjectured
by Meier and Staffelbach (1995) is proven.

5.3 Perfect Pseudo-randomness

In this section, we give a definition of so-called ”perfect” pseudo-randomness.
Loosely speaking, this means a pseudo-random source that can not ”effi-
ciently” be distinguished by a computer from a truly random sequence. How-
ever, the test for perfect pseudo-randomness is not practically implementable.
For a function f(n) (n ∈ IN) we will write f(n) = O(ν(n)) if f(n) =
O(1/g(n)) (n → ∞) for every polynomial g(z). In this case, we will say that
the function f(n) is negligible. A model M is called a perfect simulation of
a source S if for every probabilistic polynomial-time algorithm D : IBn → IB
we have

|PS(D = 1) − PM (D = 1)| = O(ν(n)).

This means that no probabilistic polynomial algorithm can distinguish S
from M with non-negligible probability, or, in other words, that S and M
are polynomially indistinguishable. If D did not satisfy the above inequality,
then we would say that D is a distinguishing algorithm. The following theo-
rem states that the so-called Comparative Next Bit Test is a test of perfect

66 5 Pseudo-random Number Generators

pseudo-randomness. However, this test is of asymptotic nature and involves
a formulation of type ”for every polynomial-time algorithm”, so it is only of
theoretical value, since there are infinitely many such algorithms. But even
in theory, up to now it is not yet known if perfect pseudo-random generators
actually exist!

Definition 5.1. A source S passes the Comparative Next Bit Test with re-
spect to a model M if, for every i ∈ {1, 2, . . . , n} and every probabilistic
polynomial-time algorithm A : IBi−1 → IB, we have that

|PS(A(x(i−1)) = xi) − PM (A(x(i−1)) = xi)| = O(ν(n)).

Theorem 5.5. A model M is a perfect simulation of a source S iff S passes
the Comparative Next Bit Test with respect to M .

Proof: The ”only if”-direction is easy to see by contraposition. What is more
difficult is the ”if”-direction which we will verify in the following. Suppose
S is not a perfect simulation of M . We have to prove that S does not pass
the Comparative Next Bit Test with respect to M . Let D : IBn → IB be a
distinguishing algorithm, i.e.,

|PS(D(x(n)) = 1) − PM (D(x(n)) = 1)| ≥ n−k

for some constant exponent k. Let pS
i denote the probability that the al-

gorithm D gives 1 as output when the first i bits of its input are taken
out of the source S and the rest are i.i.d. unbiased random bits. By re-
placing S by M in the above sentence, we define pM

i analogously. Con-
sider the difference di := pS

i − pM
i . It holds that pS

n = PS(D(x(n)) = 1),
pM

n = PM (D(x(n)) = 1), pS
0 = pM

0 = PU (D(x(n)) = 1) (where U means a
source of genuine independent i.i.d. unbiased random bits). Thus as d0 = 0
and |dn| = |pS

n−pM
n | ≥ n−k, there must be an i such that |di−di−1| ≥ n−(k+1).

W.l.o.g. di > 0. The Comparative Next Bit Test A inputs in D the concate-
nated bitstring x(n) = x(i−1)x

(n)
i (where x(i−1) ∈ S or M and x

(n)
i is a

bitstring generated by running the source U n− i+1 times). The output will
be xi if D(x(n)) = 1 and 1−xi else. Now let x1, x2, . . . , xi be bits produced by
S or M and let qS resp. qM be the probability that the distinguisher D yields
1 as output when bits number 1, 2, . . . , i− 1 are given by x1, x2, . . . , xi−1, bit
number i is 1− xi, and the rest are independent i.i.d. unbiased random bits.
Then we have

pS
i−1 =

pS
i + qS

2
,

pM
i−1 =

pM
i + qM

2
,

5.3 Perfect Pseudo-randomness 67

and thus

PS(A(x(i−1)) = xi) =
1
2
pS

i +
1
2
(1 − qS)

=
1
2

+ pS
i − pS

i−1.

On the other hand

PM (A(x(i−1)) = xi) =
1
2
pM

i +
1
2
(1 − qM)

=
1
2

+ pM
i − pM

i−1,

hence
PS(A(x(i−1)) = xi) − PM (A(x(i−1)) = xi) ≥ n−(k+1).�

The property that the Comparative Next Bit Test checks can be called un-
predictability, more precisely forwards unpredictability. Since the property
of a pseudorandom number generator to be perfectly pseudorandom or not
does not change if the output bits are taken in reverse order, forwards un-
predictability is equivalent to backwards unpredictability.
A permutation f(.) is called one-way, if its result can be calculated in poly-
nomial time, but on the other hand, for any probabilistic polynomial-time
algorithm A the probability P (A(f(x)) = x) is negligible. A predicate (bit)
B(.) is called hard-core for the permutation f(.) if B(f(.)) can be determined
in polynomial time whereas for all probabilistic polynomial time algorithms
A, the difference P (A(x) = B(x))−1/2 is neglibile. If there exists a hard-core
bit, then the permutation has to be one-way. Blum and Micali (1984) have
proved that every one-way permutation f(.) with hard-core bit B(.) gives
rise to a perfect pseudorandom generator as follows:

Theorem 5.6. (Blum and Micali.) Assume f(.) is a one-way permuation
with hard-core bit B(.). Then the iteration

g(x) = (B(f(x)), B(f(f(x))), B(f(f(f(x)))), . . .)

yields a perfect pseudorandom generator.

Proof: We will show that the above generator is not backwards predictable.
Assume the contrary. Then one could guess, in polynomial time and with non-
neglibile probability of success, the value B(fn(x)) (the n-fold iteration of f)
given the set of values S = {B(fm(x)) : m ≥ n+1}. But S can be computed
in polynomial time from fn(x). So one can guess in polynomial time and with
probability of success non-negligibly greater than 1/2 the value B(fn(x)). So
B(.) can not be hard-core, since fn(x) has the same distribution as f(x) by
the fact that f(.) is supposed to be a permutation. �

In the Blum-Micali generator, x plays the role of a random seed. So these
generators rather serve to improve randomness than produce it.

68 5 Pseudo-random Number Generators

5.4 Local Statistics and de Bruijn Shift Registers

A general feedback shift register (FSR for short) of length n is a feedback shift
register that is defined like an LFSR with the exception that the feedback
function f needs not be linear, but can be an arbitrary function f : IBn → IB
(i.e., a polynomial in n Boolean variables of arbitrary degree).
Assume that x = {xi}i≥0 is an m-periodic bitsequence. We say that x has an
[almost] ideal local statistics of order h if [almost] every h-tuple appears the
same number of times as a subsequence of x(m+h−1). The following nested
property of local statistics holds: If the m-periodic sequence x has [almost]
ideal local statistics of order h, then it has also [almost] ideal local statistics
of order 1, 2, . . . , h − 1.

Proposition 5.1. An FSR of length n can not produce an output sequence
with [almost] ideal local statistics of order n + 1.

Proof: Any pattern of n consecutive bits in x determines uniquely the next
bit. Thus at most 2n of the possible 2n+1 patterns of n consecutive bits can
occur in x, hence a fraction of at least 1 − 2n/2n+1 = 1/2 of the possible
subsequences of length n never occur in x. So almost ideal local statistics of
order n + 1 is not possible. �

Now we want to characterize those FSR of length n that produce ideal local
statistics of order n. Here the notion of a so-called de Bruijn FSR turns out
to be crucial.
An FSR is called non-singular, if all its states lie on closed cycles in its
state-transition diagram. Other states would be called transient states, so an
FSR is non-singular iff it has no transient states. In other words, an FSR
is non-singular iff every state has a unique predecessor state. A de Bruijn
FSR is a non-singular FSR with only one cycle. Non-singularity can be be
characterized algebraically by the Golomb-Welch Theorem:

Theorem 5.7. (Golomb-Welch) An FSR of length n is non-singular iff its
feedback function f satisfies

f(xj−n, . . . , xj−1) = xj−n + g(xj−2, . . . , xj−n). (5.14)

Proof: We first prove that (5.14) is necessary for non-singularity. Relation
(5.14) holds iff

f(0, a2, a3, . . . , an) = 1 + f(1, a2, a3, . . . , an)

for all a2, a3, . . . , an ∈ IB. If the FSR is singular, then there must exist at least
one state (b1, . . . , bn) ∈ IBn with two predecessor states in the state-transition
diagram. But then

f(0, b1, b2, . . . , bn−1) = f(1, b1, b2, . . . , bn−1),

hence (5.14) can not be fulfilled.

5.5 Correlation Immunity 69

Now let us show sufficiency. Predecessors of state (a1, a2, . . . , an) ∈ IBn have
the form (b, a1, a2, . . . , an−1) ∈ IBn with

an = f(b, a1, a2, . . . , an−1) = b + g(a1, a2, . . . , an−1). (5.15)

Equation (5.15) has the unique solution

b = an − g(a1, a2, . . . , an−1),

hence every state has a unique predecessor. �

Corollary 5.2. The period of the output sequence of an FSR of length n is
at most 2n with equality iff the FSR is a de Bruijn FSR. (In this case, the
output sequence wiil be called a de Bruijn sequence.)

Now the following property holds:

Theorem 5.8. The output sequence s of an FSR of length n is a periodic
sequence with ideal local statistics of order n iff the FSR is a de Bruijn FSR.

Proof: Since there are 2n different n-tuples and since the output sequence
of an FSR has period m ≤ 2n, every n-tuple can appear in the subsequence
x(m+n−1) only if m = 2n. On the other hand, if m = 2n, then every n-tuple
has to appear exactly once in x(m+n−1). Hence m = 2n is a necessary and
sufficient condition for x to have ideal local statistics of order n. But m = 2n

means that the FSR is a de Bruijn FSR. �

5.5 Correlation Immunity

Here, the model of the key generator is the following: There are m LFSR
yielding the outputs {x(j)

i }i≥0 (1 ≤ j ≤ m). These LFSR streams are gathered
by a non-linear combining function f : IBm → IB to yield the output

zi = f(x(1)
i , x

(2)
i , . . . , x

(m)
i).

On a ”short time” basis, the LFSR outputs may be well modeled by n inde-
pendent symmetric binary sources. Now take for example m = 3 and

f(x1, x2, x3) := x1x2 + x1x3 + x2x3.

One sees that if the LFSR are modeled as above, then P (zi = 0) = P (zi =
1) = 1/2. But, if the LFSR 1 (i.e., that which generates the sequence
{x(1)

i }i≥0) is known, we can mount the following correlation attack to find
the true phase of LFSR 1 and thus find its initial state: If we multiply {zi}i≥0

with the shifted sequence {x(1)
i }i≥0 in the ”correct” phase, then we see from

the definition of f that the 1 occurs with probability 3/8 instead of just 1/4
as it would be with true binary symmetric random sequences. This type of
attack can be done for every LFSR.
So a natural question is how to choose the combining function f to avoid
such attacks.

70 5 Pseudo-random Number Generators

Definition 5.2. A function f : IBm → IB is called h-th order correlation im-
mune if, whenever X1, X2, . . . , Xm are independent unbiased IB-valued ran-
dom variables, then Z := f(X1, X2, . . . , Xm) is independent of all finite sub-
sequences (Xi1 , X12 , . . . , Xih

) (1 ≤ i1 ≤ . . . ≤ ih ≤ m).

The signification of h-th order correlation immunity lies in the fact that if a
non-linear combination function f is h-th order correlation immune, then it
is not possible to mount a correlation attack on any combination of h input
sequences.
For a function f : IBm → IB, its Fourier (or Walsh-Hadamard) transform is
defined as

F (ω) :=
∑

x∈IBm

f(x)(−1)〈x,ω〉 (ω ∈ IBm).

One has the following inversion formula:

f(x) := 2−m
∑

ω∈IBm

F (ω)(−1)〈x,ω〉.

Now correlation immunity can be characterized in terms of Fourier transforms
as follows:

Theorem 5.9. (Xiao-Massey Spectral Test) The function f : IBm → IB
is h-th order correlation immune iff its Fourier transform F satisfies

F (ω1, ω2, . . . , ωm) = 0

for all ω = (ω1, ω2, . . . , ωm) ∈ IBm with 1 ≤ wH(ω) ≤ h (where wH(ω)
denotes the Hamming weight (i.e. the number of entries 1) of the vector ω).

The proof of Theorem 5.9 follows from the following two lemmas:

Lemma 5.7. Let X be a random vector consisting of m independent unbiased
IB-valued random variables X1, X2, . . . , Xm, f : IBm → IB, ω ∈ IBm\{0} and
put Z := f(X1, X2, . . . , Xm). Then Z is independent of 〈X, ω〉 iff F (ω) = 0.

Proof: Since

PZ|〈X,ω〉(1|b)

=
|{x ∈ IBm : f(x) = 1, 〈x, ω〉 = b}|

|{x ∈ IBm : 〈x, ω〉 = b}|
= 2−(m−1)

∑
x∈IBm:〈x,ω〉=b

f(x),

we get

PZ|〈X,ω〉(1|0) − PZ|〈X,ω〉(1|1)

= 2−(m−1)
∑

x∈IBm

f(x)(−1)〈x,ω〉

= 2−(m−1)F (ω).�

5.5 Correlation Immunity 71

Lemma 5.8. A discrete random variable Z is independent of the random
vector Y = (Y1, Y2, . . . , Ym) ∈ IBm iff for every a ∈ IBm, Z is independent of
〈Y, a〉.
The proof follows directly from considering Fourier transforms (see Bryniels-
son (1989)). �

We point out that Theorem 5.9 is really applicable in practice, since to com-
pute the Fourier transform needs at most O(m2m) additions and subtractions
(see Massey (1997), p. 3.63). However, high-order correlation immunity can-
not happen if the nonlinear order λ of the function f is too high. Let us
explain this in detail: Let f : IBm → IB. Then the so-called algebraic normal
form of the function f is

f(x1, x2, . . . , xm) = a0 + a1x1 + a2x2 + . . . + amxm

+a1,2x1x2 + a1,3x1x3 + . . .

+ . . .

+a1,2,...,mx1x2 . . . xm,

where the coefficients are given by the inversion formula

a1,2,...,k =
∑

x∈S1,2,...,k

f(x1, x2, . . . , xm) (5.16)

and

S1,2,...,k :=
{ {x : xk+1 = xk+2 = . . . = xm = 0} : 1 ≤ k ≤ m − 1

{x} : k = m,
(5.17)

etc. (see Siegenthaler (1984)).

Definition 5.3. The nonlinear order λ of a function f : IBm → IB is the
maximum number of variables xj that occur in a term of the algebraic normal
form of f .

Theorem 5.10. (Siegenthaler’s Inequality) If λ denotes the nonlinear
order of the function f : IBm → IB and if f is h-th order correlation immune,
then

h ≤ m − λ.

Proof: Assume f is h-th order correlation immune for some h ∈ {1, 2, . . . , m−
1}. We show that no product of m− h + 1 or more variables xj can occur in
the algebraic normal form of f . Define the numbers

N1,2,...,k = |{x ∈ IBm : x ∈ S1,2,...,k, f(x) = 1}|. (5.18)

Let Z := f(X) where X is a vector of m independent unbiased IB-valued
random variables. Then we get

72 5 Pseudo-random Number Generators

P (Z = 1 | Xk+1 = Xk+2 = . . . = Xm = 0)

=
N1,2,...,k

2k
(1 ≤ k ≤ m − 1) (5.19)

and
P (Z = 1) =

N1,2,...,m

2m
. (5.20)

We obtain

P (Z = 1 | Xk+1 = Xk+2 = . . . = Xm = 0)
= P (Z = 1) (m − h ≤ k ≤ m − 1)

and hence from (5.19) and (5.20)

N1,2,...,m

2m
=

N1,2,...,m−1

2m−1
= . . . =

N1,2,...,m−h

2m−h
,

which implies

N1,2,...,k = 2k−(m−h)N1,2,...,m−h (m − h ≤ k ≤ m). (5.21)

From (5.21), for m − h + 1 ≤ k ≤ m, these numbers must be even, which
implies, from (5.16) and (5.17)

a1,2,...,k = 0 (m − h + 1 ≤ k ≤ m).

However, this argument not only applies to the first k components of x, but
to any k components of x, which proves the assertion. �

The tradeoff given by Siegenthaler’s Inequality does not exist if the combining
function f is allowed to have memory. We will not persue this track further
and only refer to Rueppel (1986), Chapter 9.
Further seminal papers on correlation attacks are e.g. Chepyzhov, Smeets
(1991) and Meier, Staffelbach (1989), (1991), (1992).

5.6 The Quadratic Congruential Generator

Now we will consider a special example of the above Blum-Micali generator,
namely the quadratic congruential generator. Its implementation can be done
by a (especially simple) non-linear shift register of length 1. Assume n is
a Blum integer, i.e., a product of two distinct odd primes p and q both
congruent to 3 (mod.4). (In particular, the factoring of Blum integers is
believed to be computationally hard.) Let k be the length of the binary
expansion of n (k := |n|). For an integer x, define the ”absolute value” mod.n
by

|x|n :=
{

x(mod.n) : x(mod.n) < n/2
n − (x(mod.n)) : x(mod.n) ≥ n/2.

5.6 The Quadratic Congruential Generator 73

Then take, as permutation f(.) = fn(.), the ”absolute value” of the square:

fn(x) := |x2(mod.n)|n.

(By Euler’s criterion (mentioned in Section 2.2) for prime factors of Blum
integers we have that

((n − y)|n) = (−y|n)
= (−1|n)(y|n)
= (−1|p)(−1|q)(y|n)
= (y|n).

Hence exactly one square root of a quadratic residue modulo n is less than
n/2, since every quadratic residue modulo n has exactly two square roots
with Legendre-Jacobi symbol equal 1. So f is really a permutation of the set

S = {x ∈ ZZ∗
n : 0 ≤ x < n/2, (x|n) = 1}.)

Using this permutation in the Blum-Micali construction will be called the
quadratic congruential generator. The main aim of this section will be to
prove and discuss the following important fact:

Theorem 5.11. Breaking the quadratic congruential generator is probabilis-
tic polynomial-time equivalent to the factoring of n.

First we will show the following:

Theorem 5.12. Inverting fn(.) is probabilistic polynomial-time equivalent to
factoring n = pq (p, q primes).

Proof: On given as input a square z = y2(mod.n) with 0 < z < n/2 and a
square root y with (y/n) = −1 is known, then a probabilistic polynomial-time
algorithm A that inverts fn(.) will output a square root x of z in the domain
of fn(.) with probability greater than, say, 1/δ(|n|) (where |n| is the length
of the binary expansion of n and δ is some polynomial). Since (x/n) = 1 (by
the definition of the domain of fn), but also (−1/n) = 1, it is not possible
that x = ±y(mod.n). But

pq|x2 − y2 = (x − y)(x + y),

which entails that exactly one of the two primes p, q divides x + y evenly.
From the Euclidean algorithm one can compute gcd(n, x + y) in polynomial
time, which yields the factors p and q. The probability that a randomly chosen
y ∈ ZZ∗

n satisfies indeed (y/n) = −1 and also the probability that 0 < z < n/2
are both 1/2. If y is a randomly (with uniform distribution) selected element
of the set {y ∈ ZZ∗

n : (y/n) = −1}, then also z is uniformly distributed on the
set of all quadratic residues mod.n. So one can run the following probabilis-
tic algorithm: Generate at random (with uniform distribution) an element

74 5 Pseudo-random Number Generators

y ∈ ZZ∗
n. Repeat this until for z := y2(mod.n) one has 0 < z < n/2. Then

input z to the inverting algorithm A. Check if A(z)2 = z(mod.n). The mean
number of times this has to be done until one finds a square root that allows
to factor n is 2δ(|n|). If A is polynomial, the whole calculation proceeds is
expected polynomial-time. �

Proof of Theorem 5.11: 1. The strategy of proof will be to show that
Lsb(f−1

n (.)), the least significant bit of f−1
n (.) is hard-core and then to use

Theorem 5.12. In other words, we will prove that under the hypothesis that
a probabilistic polynomial-time algorithm that can guess the least significant
bit of f−1

n (.) with probability non-negligibly greater that 1/2, then one can
construct a probabilistic polynomial-time algorithm for inverting fn(.). So
there is some similarity to Section 2.4. Let O denote an oracle that takes
as input n and an x in the range of fn(.) and yields as output a guess for
Lsb(f−1

n (.)) that is correct with probability 1/2 + |n|−c for some constant c.
Now the method for constructing a probabilistic polynomial-time algorithm
for inverting fn(.) will be to call the oracle O at most polynomially many
times to find f−1

n (.) with the aid of a gcd-algorithm that makes all its com-
putations based solely on the least significant bits of all involved integers
(so that we can use O). This can be done with the Brent-Kung algorithm,
which we will describe later and from which we will show that indeed with a
probability lower-bounded by the inverse of some polynomial in k yields the
correct answer, so that the experiment described in the following needs to be
repeated only an expected number of times that is polynomial in l. Using the
Brent-Kung algorithm for calculating greatest common divisors, we compute,
for randomly chosen a, b, the greatest common divisor gcd([ax]n, [bx]n) based
on the permuted values fn(ax(mod.n)) and fn(bx(mod.n)), where

[z]n :=
{

z(mod.n) : z(mod.n) < n/2
z(mod.n) − n : z(mod.n) ≥ n/2.

When we have finished the Brent-Kung algorithm, we will be in possession
of a representation of [dx]n := gcd([ax]n, [bx]n) of the latter gcd, hence d and
fn(dx(mod.n)) = fn([dx]n) are known. If [ax]n and [bx]n are relatively prime
(an event whose probability tends asymptotically to 6/π2 as n → ∞ due to
a theorem of Dirichlet), then it follows that

[dx]n = ±1 (5.22)

and therefore fn(dx) = 1. If we check fn(x) ?= fn(±d−1(mod.n)) (note that
the Euclidean algorithm calculates inverses in polynomial time without know-
ing the prime factorization of n) and find that these two values are indeed
equal, then we have a good probability that one of the values ±d−1(mod.n)
lies indeed in the domain of fn(.) and we are finished. Otherwise, repeat the
experiment sufficiently (probabilistically polynomially) many times.

5.6 The Quadratic Congruential Generator 75

2. Now we turn to the description of the Brent-Kung algorithm:
Given two integers A (odd) and B with lengths ≤ |n|, repeat the following
steps until B = 0:

– While Lsb(|B|) = 0, do B ← B/2; length(B) ← length(B) − 1.
– If length(B) < length(A), then swap(A, B); swap(length(A), length(B)).
– If Lsb(|(A + B)/2|) = 0, then B ← (A + B)/2; else B ← (A − B)/2.

(If A is even, then in step 3 the expression Lsb((A + B)/2) makes no sense.
But in this case we can evidently reduce A before, so that it will become
odd.)
(This Brent-Kung algorithm rests on the following facts:
(i) If a, b are both even, then gcd(a, b) = gcd(a/2, b/2).
(ii) If a is odd and b is even, then gcd(a, b) = gcd(a, b/2).
(iii) If a, b are both odd, then gcd(a, b) = gcd(a, (a+b)/2) = gcd(a, (a−b)/2).)
After halting of the Brent-Kung algorithm (i.e. B = 0), the variable (memory
cell) A contains the gcd of the two original input numbers A and B. One
counts that the maximal number of evalutations of a least significant bit in
the Brent-Kung algorithm is O(|n|).
3. Let us now explain how the Brent-Kung algorithm is used in our problem.
In our application, we must put A := [ax]n and B := [bx]n and the algorithm
will work only with fn(ax(mod.n)) and fn(bx(mod.n)) with the aid of the
oracle O. We first define the so-called parity by

par(bx(mod.n)) := Lsb(|B|) = Lsb(|[bx]n|). (5.23)

The bit Lsb(|B|) is what we really want to know at the end, so from (5.23)
we must look for a procedure that calculates the parity, using the oracle O.
4. The parity algorithm (sketch): The basic principle here is to determine
par(dx(mod.n)) by comparing the Lsb(s) with Lsb(s + dx(mod.n)) for ran-
domly chosen s ∈ ZZ∗

�n/2
 (with uniform distribution). If no ”wraparound 0”
occurs by adding s to dx, then one has the relation

parn(dx(mod.n)) = Lsb(s) + Lsb(s + dx(mod.n)) (mod.2). (5.24)

The probability of a ”wraparound 0” can be shown to be small. If one
chooses s at random as described above, then unfortunately the values of
(s + dx)(mod.n) are not known. How to overcome this difficulty and for fur-
ther details, in particular the control of possible errors, we refer to Brands,
Gill (1996). �

6 An Information Theory Primer

6.1 Entropy and Coding

In this section, we will introduce one of the most important notions in cryp-
tology, namely the information content and the entropy. The entropy of a
random variable X that can assume the n different values x1, x2, . . . , xn with
the respective probabilities p1, p2, . . . , pn is defined as

H(X) = H(p1, p2, . . . , pn) =
n∑

i=1

pi log2(1/pi) = −
n∑

i=1

pi log2 pi.

If one considers, e.g., a decision tree, then one sees easily that log2(1/pi) (unit:
”bit”) may be interpreted as the information content of the realization xi of
the random variable X , i.e. the entropy is the average information content
of a realization of X . Actually, the entropy only depends on the probabilites
p1, p2, . . . , pn and not of the realizations x1, x2, . . . , xn themselves. If we define

X := {x1, x2, . . . , xn}

as the alphabet, then, instead of H(X), we will sometimes also write H(X).
In coding theory, the entropy is (loosely speaking) the optimal average length
of a codeword in an alphabet with two letters, as we will see in the following.

Lemma 6.1. If for pi, qi > 0 we have the inequality
∑n

i=1 qi ≤
∑n

i=1 pi, then
it follows that

−
n∑

i=1

pi log2 pi ≤ −
n∑

i=1

pi log2 qi.

Proof: Since log x ≤ x − 1 we have log2 x ≤ x−1
log 2 , hence

n∑
i=1

pi log2(qi/pi) ≤ 1
log 2

n∑
i=1

pi((qi/pi) − 1)

≤ 1
log 2

(
n∑

i=1

qi −
n∑

i=1

pi)

≤ 0.�

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 77-88, 2004.
© Springer-Verlag Berlin Heidelberg 2004

78 6 An Information Theory Primer

If in the above lemma we put qi = 1/n (i = 1, 2, . . . , n), then the inequality

H(p1, p2, . . . , pn) ≤ H(
1
n

,
1
n

, . . . ,
1
n

) = log2 n

follows. Hence the entropy of a random variable with n possible values be-
comes maximal if these n values are uniformly distributed, and in this case
it assumes the value log2 n.
Given an alphabet X = {x1, x2, . . . , xn} with the n different letters x1, x2,
. . . , xn (so, e.g., for the latin alphabet we have n = 26 und x1 = ”A”, x2 =
”B”, . . . , x26 = ”Z”), then a (binary) encoding is a map

c : xi �→ ci,

which assigns a (finite) bitsequence ci to every letter xi from the alphabet
X such that the condition of decodability (or ”unique decoding”) is fulfilled:
Two different sequences of letters of plaintext must yield different codes. A
sharper condition is irreducibility (Fano condition): No codeword is allowed
to be the beginning of another codeword. Let �i denote the length of the
codeword for the letter xi. If pi is the probability of occurrence of letter xi,
then

� =
n∑

i=1

pi�i

is the average length of a codeword.

Lemma 6.2. (Kraft’s inequality) For a decodable code we have

n∑
i=1

2−�i ≤ 1.

Proof: The proof uses generating functions of sequences. Let ak be the num-
ber of letters from the alphabet X with a codeword of length k and bm the
number of sequences of letters (from X) with a codeword of length m. Then
we have

bm =
m∑

k=1

akbm−k

(where b0 := 1). If we consider the generating functions of {bm}m≥1 and
{ak}k≥1

g(z) =
∞∑

m=1

bmzm (|z| < 1/2)

(convergent since bm ≤ 2m due to the ”unique decoding condition”) and

f(z) =
∞∑

k=1

akzk (z ∈ IR)

6.1 Entropy and Coding 79

(polynomial!), then we obtain

g(z) =
∞∑

m=1

bmzm

=
∞∑

k=1

∞∑
m=1

akbm−kzm

=
∞∑

k=1

akzk
∞∑

i=0

biz
i

= f(z)(g(z) + 1)

(where we have put i = m − k). Hence

f(z) =
g(z)

g(z) + 1
.

Since g(z) ≥ 0 (0 ≤ z < 1/2), we have that the polynomial f(z) ≤ 1 (0 ≤
z < 1/2), hence f(1/2) ≤ 1 due to continuity, which yields the assertion. �

On the other hand, it holds that

Lemma 6.3. For given �1, �2, . . . , �n ∈ IN that obey Kraft’s inequality, there
exists an irreducible code such that the codeword ci is of length �i.

Proof: The proof is of combinatorial nature. Let Ik be the set of all i ∈
{1, 2, . . . , n} such that �i = k and denote by ak the number of elements of Ik.
Thus the letters xi for which i ∈ I1 can be encoded by codewords of length
1. Now we proceed by recursion. Assume all letters having a codeword of
maximal length k − 1 are encoded. Then one has used, for j < k, always aj

bitsequences of length j that are initial strings of always 2k−j bitsequences
of length k. Thus under the condition of irreducibility,

2k −
k−1∑
j=1

aj2k−j = 2k(1 −
k−1∑
j=1

aj2−j)

bitsequences still remain at our disposal. Since Kraft’s inequality must hold,
the latter quantity is ≥ 2k(ak2−k) = ak, so that enough codewords remain
for also encoding all letters xi with i ∈ Ik. �

Let us assume that the letters xi of the alphabet X occur with the respective
probabilities pi and put H(X) = H(p1, p2, . . . , pn).

Theorem 6.1. (Coding Theorem) (i) Every decodable encoding of the al-
phabet X has an average codeworth length

� ≥ H(X).

(ii) On the other hand there exists an irreducible code with average codeword
length

� ≤ H(X) + 1.

80 6 An Information Theory Primer

Proof: (i) From Kraft’s inequality and Lemma 6.1 (by putting qi = 2−�i) it
follows that

H(X) = −
n∑

i=1

pi log2 pi

≤ −
n∑

i=1

pi log2(2
−�i)

=
n∑

i=1

pi�i

= �.

(ii) Let �i = −�log2 pi�. Then we have

2−�i ≤ 2− log2 pi = pi,

which entails Kraft’s inequality. Now Lemma 6.3 yields the existence of an
irreducible code with these �i. On the other hand, one sees that

� =
n∑

i=1

pi�i

≤
n∑

i=1

pi(− log2 pi + 1)

= H(X) + 1.�

To find such an optimal code explicitly is another problem of coding theory,
which will not be considered here. It has to do with so-called Huffman trees,
which are rooted binary trees all of whose non-leaves are arranged, from left
to right, in order of non-decreasing distance from the root.
Another (less known) complexity measure is the so-called marginal guess-
work. It has nothing to do with the entropy in the sense that there are no
general inequalities relating these two measures onto another. This approach
will be presented in Section 6.3.

6.2 Relative Entropy, Mutual Information, and
Impersonation Attack

In this section, we will collect some results about information theory involving
several probability measures. First, we define the ”relative entropy” between
two probability measures:

Definition 6.1. Let P and Q be two probability measures on the same alpha-
bet X . Then the relative entropy (information divergence, Kullback-Leibler
distance, discrimination) from P to Q is defined as

6.2 Relative Entropy, Mutual Information, and Impersonation Attack 81

D(P ||Q) := −
∑
x∈S

P (x) log2

Q(x)
P (x)

.

Note that in general D(P ||Q) �= P (Q||P). The following lemma shows that
the word ”distance” is chosen reasonably.

Lemma 6.4. D(P ||Q) ≥ 0 with equality iff P = Q.

Proof: From the inequality log r ≤ r − 1 with equality iff r = 1 we deduce

D(P ||Q) ≥ − 1
log 2

∑
x∈X

P (x)(
Q(x)
P (x)

− 1)

=
1

log 2
(−

∑
x∈X

Q(x) +
∑
x∈X

P (x))

≥ 0,

with equality iff P (x) = Q(x) for all x ∈ X . �

The relative entropy has important properties for hypothesis testing. This
will be used, e.g., in connection with the impersonation attack presented at
the end of this section. Consider the null hypothesis H0 and the alternative
H1 and let V be the decision: V = 0 if we decide for H0 and V = 1 if we
decide for H1. Let D0 be the decision region for H0 and D1 that for H1.
Consider the probability measures

P := PY |H0 ,

Q := PY |H1 .

One can interpret the relative entropy from P to Q as the expectation of the
log-likelihood ratio under the null hypothesis:

D(P ||Q) = E(log2

P (Y)
Q(Y)

| H0)

(since

D(P ||Q) = D(PY |H0 ||PY |H1)

= −
∑

y∈supp(PY |H0)

PY |H0(y) log2

PY |H1(y)
PY |H0(y)

).

Let α, resp. β, denote the drror probabilites of first, resp. second, kind:

α := P (Y ∈ D1|H0) =
∑

y∈D1

P (y),

β := P (Y ∈ D0|H1) =
∑

y∈D0

Q(y).

82 6 An Information Theory Primer

Then we also have

D(PV |H0 ||PV |H1) = −α log2

1 − β

α
− (1 − α) log2

β

1 − α
.

Theorem 6.2. It holds that

D(PV |H0 ||PV |H1) ≤ D(P ||Q),

with equality iff for the likelihood ratio L(y) := P (y)/Q(y) we have L(y) = �0

for all y ∈ D0 and L(y) = �1 for all y ∈ D1.

Proof: Consider the events Ai = {V = i} (i = 0, 1). We observe

D(P ||Q) = E(− log2

Q(Y)
P (Y)

|H0)

= E(− log2

Q(Y)
P (Y)

|H0 ∩ A0)P (A0|H0)

+E(− log2

Q(Y)
P (Y)

|H0 ∩ A1)P (A1|H0). (6.1)

However, PY |H0∩A0(y) = P (y)/(1 − α) if y ∈ D0 and 0 if y ∈ D1. So, by the
concavity of the log-function, it follows that

E(− log2

Q(Y)
P (Y)

|H0 ∩ A0) ≥ − log2(E(
Q(Y)
P (Y)

|H0 ∩ A0))

= − log2

∑
y∈D0

Q(y)
P (y)

P (y)
1 − α

= − log2

β

1 − α
.

Also P (A0|H0) = 1 − α. By applying similar considerations for the second
summand in (6.1) we obtain the asserted inequality. �

An important special case of the above theorem is the following estimate: If
we choose the error probability of the first kind to be 0 (this is the usual
assumption in cryptography; we do not want that an honest cryptogram of
Alice will be thought of as fraudulent by Bob), then it follows that the error
probability of the second kind has the following lower bound:

Corollary 6.1. If α = 0, then

β ≥ 2−D(P ||Q).

Now we turn to the definition of mutual information. For this, we first define
the conditional entropy of the random variable X given Y :

H(X |Y) := E(− log2 PX|Y (X |Y))

= −
∑

(x,y)∈supp(P(X,Y))

P(X,Y)(x, y) log2 PX|Y (x|y).

6.2 Relative Entropy, Mutual Information, and Impersonation Attack 83

Let us collect some properties of the conditional entropy in the form of lem-
mas. They can be proved based on the relative entropy.

Lemma 6.5. It holds that

0 ≤ H(X |Y) ≤ H(X)

with equality on the left-hand side iff Y uniquely determines X and with
equality on the right-hand side iff X and Y are independent.

Proof: Let P (x, y) := P(X,Y)(x, y) and Q(x, y) = PX(x)PY (y). Then we
have

0 ≤ D(P ||Q)

= −
∑

(x,y)∈supp(P(X,Y))

P(X,Y)(x, y) log2

PX(x)PY (y)
P(X,Y)(x, y)

= −
∑

(x,y)∈supp(P(X,Y))

P(X,Y)(x, y) log2

PX(X)PY (y)
P(X|Y)(x|y)PY (y)

= E(− log2 PX(x) + log2 PX|Y (X |Y))
= H(X) − H(X |Y)

with equality iff P(X,Y)(x, y) = PX(x)PY (y) for all (x, y) ∈ supp(P(X,Y)), i.e.
iff X and Y are independent. �

Lemma 6.6.

H((X, Y)) = H(X) + H(Y |X).

Proof:

H((X, Y)) = E(− log2 P(X,Y)(X, Y))
= E(− log2(PX(X)PY |X(Y |X)))
= E(− log2 PX(X)) + E(− log2 PY |X(Y |X))
= H(X) + H(Y |X).�

Lemma 6.7.

H(X |(Y, Z)) ≤ H(X |Y)

with equality iff X and Z are independent, given that Y is known.

Proof: Put
P (x, y, z) := P(X,Y,Z)(x, y, z)

and
Q(x, y, z) := PY (y)PX|Y (x|y)PZ|Y (z|y).

84 6 An Information Theory Primer

Then for the relative entropy we have

D(P ||Q) = −
∑

(x,y,z)∈supp(P(X,Y,Z))

P(X,Y,Z)(x, y, z) log2

PY (y)PX|Y (x|y)PZ|Y (z|y)

P(X,Y,Z)(x, y, z)

= E(− log2

PY (Y)PX|Y (X|Y)PZ|Y (Z|Y)

P(X,Y,Z)(X, Y, Z)
).

But, since

P(X,Y,Z) = PY (Y)PX|Y (X |Y)PZ|(X,Y)(Z|(X, Y)),

it follows that

D(P ||Q) = E(− log2

PZ|Y (Z|Y)
PZ|(X,Y)(Z|(X, Y))

)

= H(Z|Y) − H(Z|(X, Y))
≥ 0,

with equality iff for all x, y, z

PY (y)P(X,Z)|Y ((x, z)|y) = PY (y)PX|Y (x|y)PZ|Y (z|y),

which yields the assertion. �

This allows us to define the mutual information I(X ; Y) := H(X)−H(X |Y);
this is the information that Y gives about X . So Lemma 6.5 can be rewritten
in the form

0 ≤ I(X ; Y) ≤ H(X),

with equality on the left-hand side iff X and Y are independent and equality
on the right-hand side iff Y uniquely determines X . More generally, one can
define

I(X ; Y |Z) := H(X |Z)− H(X |(Y, Z))

as the information that Y gives about X if Z is known. Then one also has

0 ≤ I(X ; Y |Z) ≤ H(X |Z),

with equality on the left-hand side iff X and Y are independent given Z and
equality on the right-hand side iff Y uniquely determines X if Z is given.
In cryptology, there is not only the problem of keeping a message secret, but
that of Bob being able to be ”reasonably” sure that he really gets what Alice
has sent to him without Eve having changed the text. We underline that se-
crecy and authenticity/integrity are different properties, neither implies the
other automatically.
One speaks of an impersonation attack in the case when Alice sends a cryp-
togram Y to Bob, then Eve, without observing Y , replaces it by some fraud-
ulent cryptogram Ỹ . The impersonation attack succeeds if Bob can decrypt

6.2 Relative Entropy, Mutual Information, and Impersonation Attack 85

Y ′ := Ỹ and accepts it (i.e. believes that it comes from Alice). We denote by
PI the success probability of an impersonation attack if Alice uses an opti-
mal strategy. There is a lower bound due to Simmons (1984) for this success
probability:

Theorem 6.3. (Simmons’bound) Denote by Z the key used. Then we have

PI ≥ 2−I(Y ;Z).

Proof: It is useful to interpret the impersonation attack as a statistical
hypothesis-testing problem as follows: Denote by H0 the null hypothesis that
the cryptogram Y ′ received by Bob is really the cryptogram Y written by
Alice, who used the key Z = z, hence P (y) = PY |Z(y|z) for all y. As al-
ternative, we consider the hypothesis H1 that Y ′ has been formed by Eve
according to the probability

Q(y) = PY (y) =
∑

z

PY |Z(y|z)PZ(z).

Then we have

D(P ||Q) = E(− log2

PY (Y)
PY |Z(Y |Z)

| Z = z)

and thus

E(D(P ||Q)) =
∑

z

D(P ||Q)PZ(z)

= E(− log2

PY (Y)
PY |Z(Y |Z)

)

= H(Y) − H(Y |Z)
= I(Y ; Z). (6.2)

But now from (6.2) and Corollary 6.1 we deduce that

PI ≥ E(β)
≥ E(2−D(P ||Q))
= −E(−2−D(P ||Q))
≥ 2−E(D(P ||Q))

= 2−I(Y ;Z).�

The significance of Simmons’ bound is the following: Of course, in designing
a cryptosystem where authenticity is important, one should take care that
the success probability of an impersonation attack and thus Simmon’s bound
is as small as possible, i.e., the cryptogram should reveal a large amount of
information about the key.

86 6 An Information Theory Primer

6.3 *Marginal Guesswork

As we have stated at the end of Section 6.1, there are also other complexity
measures than entropy. Here we will present the so-called marginal guesswork,
which denotes, roughly speaking, the optimal number of trials necessary to
be guaranteed a certain chance α of guessing a random value in a brute-force
search. It will turn out that entropy and marginal guesswork have nothing
to do with each other in the sense that there is no general inequality relating
them one to the other. Let X be a random variable taking values in the
alphabet X = {x1, x2, . . .}. While entropy measures how difficult it is to
determine the value of X given single queries to multiple oracles that answer
questions of the type ”Is X(ω) ∈ U?” for subsets U ⊂ X , marginal guesswork
measures the difficulty of determining X(ω) with multiple queries submitted
to a single oracle that answers questions ”Is X(ω) = x?”. Let us go to a
formal definition.
Assume w.l.o.g. that the probabilities pi := P (X = xi) are sorted in non-
increasing order:

p1 ≥ p2 ≥ . . . ≥ pn > pn+1 = . . . = 0.

Then, for 0 ≤ α ≤ 1, the α-marginal guesswork is defined as

wα(X) := min{i :
i∑

j=1

pj ≥ α}.

Hence, wα measures the maximum work for determining the value of the ran-
dom variable X when one wishes a probability of success of α in a brute-force
search. The case α = 1 is an exhaustive search. While in practice, the search
for cipher keys is often exhaustive, the guess of passwords is rarely so (e.g.,
with UNIX).
If the random variable X is uniformly distributed on some subset of X (e.g.
deterministic), then one sees at once that H(X) ≈ log2 wα(X). A similar
relation holds for long random sequences with the ”asymptotic Equipartition
Property” (Pliam (2000), p.73). However, the two uncertainty measures ”en-
tropy” and ”marginal guess work” can be completely different in the following
sense:

Theorem 6.4. For each 0 < α < 1 and every positive number N , there are
finitely supported random variables X and Y such that

log2 wα(X) > H(X) + N (6.3)

and
H(Y) > log2 wα(Y) + N. (6.4)

6.3 *Marginal Guesswork 87

For the proof of Theorem 6.4 we need the following lemma:

Lemma 6.8. For every ε > 0 there exists a finitely supported random vari-
able X such that

2�H(X)�∑
i=1

pi < ε,

where pi := P (X = xi) (and, w.l.o.g., p1 ≥ p2 ≥ . . .).

Proof: Define the random variable Xj,k by the sequence of probabilities

a−1, a−2, . . . , a−k followed by m copies of a−k,

where a = 2j and m is chosen so that all above probabilites sum up to 1.
One observes that we must have

m =
1 + (a − 2)ak

a − 1
.

Calculating the entropy gives

H(Xj,k) =
k∑

i=1

a−i log2 ai +
1 + (a − 2)ak

a − 1
a−k log2 ak

= j
k∑

i=1

ia−i + jk
1 + (a − 2)ak

(a − 1)ak

= j
ak+1 − (k + 1)a + k

(a − 1)2ak
+ jk

1 + (a − 2)ak

(a − 1)ak

= jk
a − 2
a − 1

+ hj,k

with

hj,k =
j(ak − 1)

ak−1(a − 1)2
.

Now we fix a lower bound 2 < j, hence we have a > 4. Then we get

jk
a − 2
a − 1

> log2 k

and hence
2�Hj,k� ≥ 2Hj,k ≥ 2jk(a−2)/(a−1) > k.

We obtain further

sj,k :=
2�Hj,k�∑

i=1

pi

≤
k∑

i=1

a−i + (2�Hj,k� − k)a−k

=
1

2j − 1
+ σj,k,

88 6 An Information Theory Primer

where

σj,k =
(a − 1)(2�Hj,k� − k) − 1

ak(a − 1)
.

If we can show that for fixed j it holds that

σj,k → 0 (k → ∞), (6.5)

then fixing a j > 2 such that (2j − 1)−1 < ε one can find a k such that
sj,k < ε, which finishes the proof. So it remains to prove relation (6.5). Since
hj,k → j/α (k → ∞), we may find an index k̂(j) such that hj,k < 1 for all
k ≥ k̂(j). Hence for k ≥ k̂(j) we have

�Hj,k� ≤ jk
a − 2
a − 1

+ 2

and thus

σj,k ≤ (a − 1)(4βk − k) − 1
ak(a − 1)

,

with
β := 2j(a−2)/(a−1) < a.

Two applications of de l’Hospital’s rule yields (6.5), as desired. �

Proof of Theorem 6.4: Let us first find X . We want to apply Lemma 6.8
with ε := α2−N . We then have

2N 2�H(X)�∑
i=1

pi ≤ 2N
2�H(X)�∑

i=1

pi < 2Nε = α.

Hence
wα(X) > 2N2�H(X)� ≥ 2N+H(X),

which proves (6.3).
In order to prove (6.4), Y will be defined as follows: Define the probabilities
q1 := P (Y = y1) := α and

qi := P (Y = yi) := (1 − α)2−k (2 ≤ i ≤ 2k + 1).

(This corresponds to a Huffman tree with one leaf of depth 1 and 2k leaves
of depth k.) One observes that wα(Y) = 1, while

H(Y) = −α log2 α − (1 − α) log2

1 − α

2k
= (1 − α)k + K(α).

The choice
k >

N − K(α)
1 − α

indeed yields (6.4). �

7 Tests for (Pseudo-)Random Number
Generators

In this chapter, we will present some statistical tests for (pseudo-)random
number generators. As mentioned earlier, there is no ”universal” test for
randomness, only finitely many necessary conditions can be tested. We will
orient us particularly on the list of tests that has been applied to evaluate
the AES (Advanced Encryption Standard; as is known, the winner has been
the RIJNDAEL algorithm ,see, e.g., Banks et al. (2000) and all the other
literature on the AES, much of it available on the Internet) and the test
battery suggested by Rukhin (2000b). For complete proofs, we refer to the
latter paper and the literature cited therein.

7.1 The Frequency Test and Generalized Serial Test

Consider the piece

x := (x−ν+1, x−ν+2, . . . , xN−1)

of a bitsequence {xn}n∈ZZ . From this piece, one can form N overlapping ν-
grams of consecutive bits. Let Mν denote the number of pairs of repeatedly
occurring ν-grams. For a fixed ν-gram

s := (s−ν+1, s−ν+2, . . . , s0)

it is convenient to denote the events

As(x) := {(x−ν+1, x−ν+2, . . . , x0) = s}

and, more generally,

DmAs(x) := {(x−ν+m+1, x−ν+m+2, . . . , xm) = s}.

Then one can write the test statistic as

Mν(x) =
1
2

N−1∑
m,n=0;m �=n

∑
s

1(DmAs(x)) · 1(DnAs(x))

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 89-105, 2004.
© Springer-Verlag Berlin Heidelberg 2004

90 7 Tests for (Pseudo-)Random Number Generators

(where 1(. . .) denotes the indicator function). For ν = 1 we obtain just the
usual frequency test. If one defines ns(x) as the frequency of occurrence of
the ν-gram s in the piece x, then one can write

Mν(x) =
∑

s

1
2
ns(x)(ns(x) − 1).

Let us determine the (asymptotic) distribution of Mν(x) under the null hy-
pothesis that x consists of i.i.d. unbiased random bits. Since

E(1(DmAs(x))) = 2−ν ,

we obtain E(ns) = 2−νN . Let us first assume n > m and n−m < ν (i.e., the
”windows” are overlapping). One observes that 1(DmAs(x))·1(DnAs(x)) = 1
iff the first n − m bits are repeated, i.e. if x is of the form

(. . . , s−(n−m)+1, s−(n−m)+2, . . . , s0, s−(n−m)+1, s−(n−m)+2, . . . , s0).

There are exactly 2n−m ν-grams with this property, hence

E(1(DmAs(x)) · 1(DnAs(x))) = 2−(ν+n−m)

and thus
E(

∑
s

1(DmAs(x)) · 1(DnAs(x))) = 2−ν .

The same formula holds in the case of non-overlapping windows. Thus

E(Mν) = N(N − 1)2−(ν+1). (7.1)

It is convenient to introduce the statistic

Lν :=
2ν+1

N
Mν .

If we compare it with the ”goodness-of-fit” statistic

Ψ2
ν =

∑
s

(ns − 2−νN)2

2−νN

=
2ν

N

∑
s

nx(ns − 1) + 2ν − N,

then we get
Lν = Ψ2

ν − 2ν + N. (7.2)

From (7.1) we obtain

E(Lν) =
2ν+1

N
E(Mν) = N − 1.

7.2 Maximum Absolute Value of Random Walk Test 91

If by definition we put Ψ2
0 := 0, then (7.2) hold for all ν ≥ 0. By a theorem

of Good (1953), (1957) about the asymptotic (as N → ∞) χ2-distribution of
certain statistics related to Ψ2

ν and some algebraic manipulations (involving
first and second difference operators, applied to Lν) one obtains the asymp-
totic variance

Var(Lν) = 6(2ν − 1) − 4ν

and asymptotic covariance (for ν1 < ν2)

Cov(Lν1 , Lν2) = 2ν1+1(ν2 − ν1 + 3) − 2(ν1 + ν2 + 3).

Thus, for ν1, ν2 → ∞, ν1 < ν2, the correlation coefficient has the asymptotic
behavior

ρ(Lν1 , Lν2) ∼
3 + ν2 − ν1

3
2−(ν2−ν1)/2.

7.2 Maximum Absolute Value of Random Walk Test

If the sequence to be tested is denoted by {xn}n≥1, then let Sk be the k-th
partial sum:

Sk :=
k∑

j=1

xj .

Take the null hypothesis of i.i.d. unbiased random bits as before. From Révész
(1990), p.17 we have, for the maximal partial sum, the relation

P (max
1≤k≤n

|Sk| ≥ t) = 1 −
∑

4|k|≤(n/t)+1

P ((4k − 1)t ≤ Sn ≤ (4k + 1)t)

+
∑

−(n/t)−3≤4k≤(n/t)−1

P ((4k + 1)t ≤ Sn ≤ (4k + 3)t),

which can be used by noting the fact that under the null hypothesis, the
statistic (Sn +n)/2 obeys a binomial distribution with parameters n and p =
1/2. However, also (even for small values of n) the following approximation
is valid:

P (max
1≤k≤n

Sk ≤ √
nz) n→∞→ 4

π

∞∑
j=0

(−1)j

2j + 1
exp(− ((2j + 1)π)2

8z2
)

z→∞∼ 1 − 4
3
√

2πz
exp(−9z2

2
)

(see Rukhin (2000b)).

92 7 Tests for (Pseudo-)Random Number Generators

7.3 Number of Visits of Random Walk Test

An excursion of the partial sum process mentioned in the previous section is
a sequence of indexes

(i, i + 1, . . . , �) : Si−1 = S�+1 = 0, Sk �= 0 (k = i, i + 1, . . . , �).

Let J be the number of excursions. The null hypothesis of i.i.d. unbiased
random bits should be rejected if the value

P (J < J(obs)) ≈
√

2
π

J(obs)/
√

n∫
0

e−u2/2du

is too small (where J(obs) means the observed value of J). If this is not the
case, then the statistic ξ(x), defined as the number of visits to x(�= 0) in one
excursion should be calculated. Its distribution under the null hypothesis is
known to be as follows:
Proposition 7.1.

P (ξ(x) = 0) = 1 − 1
2|x|

and
P (ξ(x) = k) =

1
4x2

(1 − 1
2|x|)

k−1 (k ≥ 1).

Proof: We first assume that the individual random bits sj are i.i.d. biased
random bits, i.e., P (Sj = 1) = p, P (Sj = 0) = q < p. In a finite excursion
it holds that ξ(x) = k ≥ 1 iff the random walk {Sk}k≥0 attains the level x,
then visits x exactly k − 1 times before it finally returns to zero. Hence the
shifted random walk {Sk − x}k≥0 never attains the value −x during its first
k − 1 excursions. Denote ρ := min{k ≥ 1 : Sk = 0}. Since the individual
excursions are independent, one obtains

P (ξ(x) = k, ρ < ∞) = P (ξ(x) > 0)(P (ξ(−x) = 0, ρ < ∞))k−1P (ξ(−x) > 0).
(7.3)

Assume first that x > 0. Let π be the probability that {Sk}k≥0 visits x − 1
before −1. We get

P (ξ(x) > 0) = P (S1 = 1)π.

The probability π can be calculated by Pascal’s ruin problem (see, e.g., Feller
(1968), Section XIV.2, (2.5)), with which we obtain

P (ξ(x) > 0) =
q − p

(q/p)x − 1
.

7.4 Run Tests 93

Similarly,

P (ξ(−x) > 0) =
p − q

(p/q)x − 1
,

hence together

P (ξ(x) > 0) = | p − q

1 − (q/p)x
|

for all x; letting p → 1/2 proves the first assertion of the proposition. On the
other hand, if we put I := 1{x > 0}, then the above gives

P (ξ(x) = 0, ρ < ∞) = 1 − | p − q

1 − (q/p)x
| − (1 − I)(p − q), (7.4)

since
P (ξ(x) = 0, ρ = ∞) = (1 − I)P (ρ = ∞) = (1 − I)(p − q). (7.5)

Substituting this in (7.3) yields

P (ξ(x) = k, ρ < ∞)

= (pq)x(
p − q

px − qx
)2(1 − p − q

|(p/q)x − 1| − I(p − q))k−1. (7.6)

If one has an infinite excursion, then ξ(x) = k iff {Sk}k≥0 visits x, then
returns to x exactly k − 1 times (but does not return to 0) without visiting
x and 0 afterwards. This is possible only if x > 0, since otherwise {Sk}k≥0

must attain 0 again. So if I = 0, then P (ξ(x) = k, ρ = ∞) = 0. If we replace
x by −x in (7.4), we obtain

P (ξ(x) = k, ρ = ∞) = P (ξ(x) > 0)P (ξ(−x) = 0, ρ < ∞)k−1P (ρ = ∞)

=
I(p − q)2

1 − (q
p)x

(1 − p − q

(p
q)x − 1

− (p − q))k−1.

Adding this to (7.6), and letting p → 1/2, then the second assertion of the
proposition follows. �

Now one can test the observed values ξ(x)(obs) against the theoretical ones
by a chi-square test.

7.4 Run Tests

There are different definitions of runs in bitsequences. In the sequel, we will
use the definition due to Feller: A bitsequence of length n contains as many 0-
runs of length m as there are non-overlapping uninterrupted blocks containing
exactly m zeroes each. The 1-runs are defined similarly. Let

μ := 2m+1 − 2

94 7 Tests for (Pseudo-)Random Number Generators

and
σ2 := 22(m+1) − (2m + 1)2m+1 − 2

and define W (m, n) to be the number of runs of length m. By the limit
theorem (see Rukhin (2000b), (5))

P (
(W (m, n) − (n/μ))μ3/2

√
nσ

< z) → Φ(z) (n → ∞)

(Φ(z) denoting the standard normal distribution function), it holds that for

z(obs) =
√

μ(μ(W (m, n)(obs)) − n)/(σ
√

n)

the asymptotic p-value (as n → ∞) is given by

p = 2(1 − Φ(|z(obs)|)).

Now we consider the case where also m → ∞, like

n

2m
→ λ > 0.

In this case, we have that W (m, n) tends weakly to a Poisson distribution
with parameter λ (see Rukhin (2000b), (7), Barbour et al. (1992), Section
8.4). On the other hand, if one denotes by W̃ (m, n) the number of overlapping
runs of length m, then W̃ (m, n) tends weakly to the so-called Polya-Aeppli
distribution with Laplace transform (moment-generating function)

E(etW̃) = exp(
λ(et − 1)
1 − et/2

)

(see Rukhin (2000b), (8)). This turns out to be a compound Poisson distri-
bution, i.e. it corresponds to a random variable U with law

P (U = u) = e−λ/22−u
u∑

�=1

(
u − 1
� − 1

)
λ�

2��!
(u ≥ 1)

(see Rukhin (2000b), 5.1). This latter expression can also be written in terms
of the confluent hypergeometric function 1F1:

P (U = u) =
λe−λ

2u+1 1F1(u + 1, 2, λ/2) (u ≥ 1).

To use this result for a test, one partitions the observed bitsequence into
N substrings and the empirical frequencies within each such substring are
conjoined by the χ2-statistic.
To test randomness, the Longest Run Test is also appropriate. Let ν denote
the length of the longest run in a sequence of length n = MN (N blocks

7.6 Tests Based on Missing Words 95

of size M). If in the block (of size M) one has m ones and if we put u :=
min{M − m + 1, �m/(k + 1)�}, then

P (ν ≤ k) = 2−M
M∑

r=0

(
M

r

)
P (ν ≤ k | r),

P (ν ≤ k | r) =
(

M

r

)−1 u∑
j=0

(−1)j

(
M − r + 1

j

)(
M − j(k + 1)

M − r

)

(see Rukhin (2000b), p.117, Barton, David (1962)).

7.5 Tests on Frequencies of Patterns

Let
s = (s1, s2, . . . , sm)

be a nonperiodic pattern (template) of length m = log2(n/λ). Let W (m, n)
be the number of occurrences of s in a bitstring of length n. Take the usual
null hypothesis that the bistring consists of i.i.d. unbiased random bits. By in-
terpreting W (m, n) suitably as a sum of indicator functions that the observed
substring of length m coincides with s, one obtains

E(W) = (n − m + 1)2−m.

If 2−mn → λ, then W (m, n) has asymptotically a Poisson distribution with
parameter λ (Rukhin (2000b), 5.1, Barbour et al. (1992), Section 8.4). If only
n → ∞ and m remains fixed, then the law of W (m, n) (under suitable nor-
malization) tends to a standard normal distribution (see also Rukhin (2000b),
5.1).

7.6 Tests Based on Missing Words

We first make a preparation on correlation polynomials. Denote, as usually,
by {xn}n≥1 a sequence of i.i.d. unbiased random bits. Let s, t ∈ IBm be
aperiodic templates (patterns) of length m. Then the cprrelation polynomial
is defined as

Cs,t(z) :=
m∑

k=1

δ(sm−k+1,...,sm),(t1,...,tk)2−(m−k)zk−1

(where δ.,. denotes the Kronecker symbol: δs,t := 1 if s = t and zero else).
The autocprrelation polynomial is defined as

As(z) := Cs,s(z).

96 7 Tests for (Pseudo-)Random Number Generators

By the aperiodicity of s, we have As(z) = zm−1. The autocprrelation matrix
is defined as the (2 × 2)-matrix

A(z) =
(

As(z) Cs,t(z)
Ct,s(z) At(z)

)
.

Let πs(n) be the probability that the template s is missing in {x1, x2, . . . , xn}.
Then by a theorem due to Guibas and Odlyzko (1981) we have that

Fs(z) :=
∞∑

n=m

πs(n)
zn

(7.7)

=
zAs(z)

(z − 1)As(z) + 2−m
. (7.8)

Let us write the above expression in the form

∞∑
n=m

πs(n)
zn

=
zAs(z)
P (z)

, (7.9)

where

P (z) =
m∏

j=1

(z − zj)

is a polynomial of degree m with leading coefficient 1. On the other hand, we
observe that

Fs(z) =
m∑

k=1

δ(sm−k,...,sm),(t1,...,tk)2−(m−k)

·
∞∑

n=0

z−(n+m−k)
∑

k1+...+km=n

m∏
j=1

z
kj

j . (7.10)

By comparing coefficients in (7.7) and (7.10) we obtain finally

πs(n) =
∑

k1+...+km=n

m∏
j=1

z
kj

j .

Let n, m → ∞ such that
n2−m → a > 0.

One can show that in this case the asymptotic behavior of πs(n) is of the
form

πs(n) ∼ e−a(1 − (2m − 1)a2−(m+1) + (m − 1)2−m) (7.11)

(see Rukhin (2000b), p.120). Let X be the number of missing templates
of length m in {x1, x2, . . . , xn}. Then one obtains the following asymptotic
behavior of the expectation of X :

7.7 Approximate Entropy Test 97

E(X) = e−a2m + e−a(m − 1 − a/2) + O(1)

(Rukhin (2000b), (18)). By a similar, but of course more cumbersome proce-
dure, one can also derive the variance of X :

Var(X) =
∑

s

πs(n)(1 − πs(n)) +
∑
s�=t

(πs,t(n) − πs(n)πt(n)),

where πs,t(n) denotes the probability that templates s and t are missing in
{x1, x2, . . . , xn} (Rukhin (2000b), (19)). These probabilities can be deter-
mined from the equation (by comparison of coefficients)

∞∑
n=1

πs,t(n)

zn

= z · det(A(z))((z − 1) det(A(z)) + 2−m(As(z) + At(z) − Cs,t(z) − Ct,s(z)))−1.

The asymptotic behavior of the probabilities πs,t(n) is of the following type:
If Cs,t(z) = Ct,s(z) = 0, then

πs,t(n) = e−2a(1 + (m − 1 − (2m − 1)a)2−(m−1)) + O(2−2m).

If Cs,t(z) is of degree m − 1 − u and Ct,s(z) ≡ 0, then

πs,t(n) = e−2a(1 + a2−u) + O(2−min{m,2u}).

It turns out that the main contribution is given by these two types of pairs
(s, t).

7.7 Approximate Entropy Test

A more general notion than entropy is the so-called φ-entropy. Assume φ :
[0, 1] → IR is a convex C2-function with φ(1) = 0. Then the φ-entropy of a
random variable X having discrete distribution μ with atoms p1, p2, . . . , pM >
0 (at some places) is defined as

M∑
j=1

pjφ(pj).

The φ-entropy with φ = − log2 is just the usual entropy. If M = 2m and the
probability law μ is just the distribution of all templates s of length m, then
one defines the φ-uncertainty as ∑

s

νsφ(νs)

98 7 Tests for (Pseudo-)Random Number Generators

(νs denoting the relative frequency of the template s in the augmented (circu-
lar) extension of the original bitstring). In order to get a limiting distribution
for this statistic (under the usual null hypothesis), we normalize it as follows:

Φ(m) := am

∑
s

νsφ(νs),

with
am :=

2m

φ′(2−m)2−(m+1)φ′′(2−m)
.

Now the ”approximate φ-entropy of order m” is defined as

AH(m) = Φ(m) − Φ(m+1)

(see Rukhin (2000a,b)). The limit distribution (as n → ∞, n denoting again
the length of the bitstring to be tested), after centering, is as follows:

L(nAH(m) − amφ(2−m) + am+1φ(2−m−1)) w→ χ2(2m+1 − 2m)

(see Rukhin (2000b), p.123, Mitra, Rao (1971), Theorem 9.2.2). If we define
the classical Pearson χ2-statistics as Ψ2

m, i.e.,

Ψ2
m =

∑
s

(nνs − n2−m)2

n2−m
,

then its relation to Φ(m) is that

Φ(m) = 1 +
Ψ2

m

n
,

and thus for the difference sequence

ΔΨ2
m := Ψ2

m − Ψ2
m−1 = nAH(m − 1),

whose law converges weakly, as n → ∞, to χ2(2m−1). Also, it can be shown
that the laws of the second differences

Δ2Ψ2
m := (Ψ2

m − Ψ2
m−1) − (Ψ2

m−1 − Ψ2
m−2)

converge weakly (as n → ∞) to χ2(2m−2). The Pearson χ2-statistic as men-
tioned here corresponds to the choice of φ(u) = u (see Rukhin (2000b), p.124;
see also Billingsley (1956)).

7.8 The Ziv-Lempel Complexity Test

Here, the test statistic W (n) is defined (recursively) as the number of words
that arise if the bitsequence of length n is parsed into consecutive disjoint

7.9 Maurer’s “Universal Test” 99

words such that the next word is the shortest template not seen before.
Loosely speaking, this is a test of compressibility of the source. The statistic
W (n) behaves as follows (under the null hypothesis): First,

E(W (n))
n/ log2 n

→ 1 (n → ∞)

(a result due to Aldous, Shields (1988); see Rukhin (2000b)). Furthermore,
there is a constant σ > 0 such that distribtution of

W (n) − E(W (n))
σW (n)

tends weakly to a standard normal law. The value of σ has the property

σ2W (n) w∼ n(C + h(log2 n))
log3

2 n
(n → ∞),

where C ≈ 0.26600 is a constant and h is a random slowly varying continuous
function with zero mean and |h(.)| < 10−6 (Kirschenhofer et al. (1994), see
Rukhin (2000b). p.125).

7.9 Maurer’s “Universal Test”

Maurer calls his test ”universal” because ”it can detect any significant devi-
ation of a device’s output statistics from the statistics of a truly random bit
source when the device can be modeled as an ergodic stationary source with
finite memory but arbitrary (unknown) state transition probabilities” (Mau-
rer (1992)). The statistic of Maurer’s test is closely related to the entropy
per bit of the source, which is ”the correct quality measure for a secret-
key source in a cryptographic application” (Maurer (1992)). Perhaps, in our
context, the word ”universal” should be written in quotation marks; as we
have stated before, there are no practically implementable universal (in the
literal sense of the word as used in our text) tests of randomness. As the
previously discussed Ziv-Lempel Complexity Test, the statistic of Maurer’s
test measures the compressibility of the sequence. If the bitstream is sig-
nificantly compressible, then it should be considered as non-random. Maurer
(1992) rather discourages using the Ziv-Lempel complexity test. On the other
hand, the disadvantage of Maurer’s test is that one must have an x of length
n where n is of the order 10 · 2L + 1000 · 2L with 6 ≤ L ≤ 16. The first
Q = 10 · 2L blocks of L bits serve as initialization blocks, whereas the last
K := �n/L� − Q blocks of length L are the test blocks. The size of Q makes
sure that with high probability, all L-bit strings occur in the initialization
blocks. Now Maurer’s test statistic is the following:

100 7 Tests for (Pseudo-)Random Number Generators

fn :=
1
K

Q+K∑
i=Q+1

log2 ti

where ti denotes the number of indices since the previous occurrence of the
i-th template. In other words, the test consists of looking back through the
entire sequence while inspecting the test segment of L-bit blocks, checking
for the nearest previous L-bit template match, and recording the distance
(in number of blocks) to that previous match. One finds that under the null
hypothesis of i.i.d. unbiased bits, the expectation of fn is given as

E(fn) = 2−L
∞∑

i=1

(1 − 2−L)i−1 log2 i.

The variance can be approximately calculated as follows:

Var(fn) =
c(L, K)

K
Var(log2 G),

where G denotes a geometrically distributed random variable (with parameter
1 − 2−L) and c(L, K) has the approximate value

c(L, K) ≈ 0.7 − 0.8
L

+ (1.6 +
12.8
L

)K−4/L.

However, Coron and Naccache (1999), who confirmed this approximation,
warn that ”the inaccuracy due to this approximation can make the test to be
2.67 times more permissive than what is theoretically admitted”. So it is also
reasonable to test the hypothesis of randomness by verifying the normality of
the observed values fn(obs) by the t-test, where the variance is unknown. For
running this t-test, one should partition the observed sequence in a number
of, say, r ≤ 20 substrings, for every one of which one runs the test statistic,
then calculates the sample variance, and finally determines the p-value from
the t-distribution with r − 1 degrees of freedom (Rukhin (2000b)).

7.10 Rank of Random Matrices Test

Let R be the rank of an M × Q-random matrix with entries in IB. The
possible values of R are 0, 1, . . . , m := min{M, Q}. By a calculation due to
Kovalenko (1972), the random variable R obeys (under the null hypothesis)
the following distribution:

P (R = r) = 2r(Q+M−r)−MQ
r−1∏
i=0

(1 − 2i−Q)(1 − 2i−M)
1 − 2i−r

.

7.11 Linear Complexity Test 101

Take M = Q ≥ 10. Then we may approximate

P (R = M) ≈
∞∏

j=1

(1 − 2−j) ≈ 0.2888 . . . ,

P (R = M − 1) ≈ 2P (R = M) ≈ 0.5776 . . . ,

P (R = M − 2) ≈ 4
9
P (R = M) ≈ 0.1284 . . . ,

whereas P (R = r) ≤ 0.005 for R �∈ {M − 2, M − 1, M}. Let N ≈ n/M2

(where n is the length of the observed bitstring). So N can be interpreted as
the new ”sample size”, i.e., we can form N random (square) matrices with
the observed input sequence. We calculate their ranks R1, R2, . . . , RN and
determine the frequencies FM , FM−1, FM−2 of the rank values M, M−1, M−2
resp. among the R1, . . . , RN . Then we apply the chi-square test: The test
statistic

χ2 =
(FM − 0.2888N)2

0.2888N
+

(FM−1 − 0.5776N)2

0.5776N

+
(N − FM − FM−1 − 0.1336N)2

0.1336N

has, under the null hypothesis of independent unbiased bits, a chi-square
distribution with 2 degrees of freedom. The p-value is

p = exp(−χ2(obs)/2).

7.11 Linear Complexity Test

The linear complexity of a finite bitsequence x = {xi}0≤i≤n of length n + 1
is defined as the length of the shortest LFSR over the field IB that generates
x. We refer to Section 5.1 for more information about LFSR, Such a shortest
LFSR can be determined by the famous Berlekamp-Massey algorithm, which
we will present in the following. (A generalization of the Berlekamp-Massey
algorithm to residue rings was given by Reeds, Sloane (1985). We stress that
high linear complexity is by far not sufficient for a sequence to be considered
as ”random”. E.g., the sequence 0, 0, . . . , 0, 1 has maximal linear complexity,
but is very ”regular”! Let L be the length of a LFSR. We can say that the
LFSR (c0, c1, . . . , cL) ∈ IBL+1 (where cL = 1) generates the sequence x if

L∑
i=0

cixj+i = 0 (0 ≤ j ≤ n − L).

For the Berlekamp-Massey algorithm it is useful to work with polynomials,
since polynomial rings have ”nice” algebraic properties. So we call the poly-
nomial

102 7 Tests for (Pseudo-)Random Number Generators

c(n)(z) :=
L∑

i=0

ciz
i

(which is of degree L) the characterisitc polynomial (or recursion polynomial)
of the LFSR (see Section 5.1). In order to make explicit the dependence of the
coefficients of n, let us write ci =: cn,i in the above formula. The Berlekamp-
Massey algorithm is recursive and runs as follows: Suppose we have found a
characteristic polynomial c(k−1)(z) of degree Lk−1 that generates the partial
sequence x(k) = {xi}0≤i≤k−1 of length k. We want to find a characteristic
polynomial c(k)(z) that generates x(k+1).The length Lk of this new LFSR
will be the degree of c(k)(z). So we have

Lk−1∑
i=0

ck−1,ixj+i = 0 (0 ≤ j ≤ k − 1 − Lk−1).

On the other hand,
Lk−1∑
i=0

ck−1,ixk−Lk−1+i = δk

for certain δk ∈ IB. Now the recursion step is as follows: If δk = 0, then
c(k−1)(z) also generates xk and we can take

c(k)(z) = c(k−1)(z)

and hence
Lk := Lk−1.

The more difficult case is when δk = 1. Let m be such that

Lm−1 < Lm = Lk−1

(i.e., the length of the LFSR before the last jump of the length in the recur-
sion). Then we have

Lk = max{Lk−1, k + 1 − Lk−1} (7.12)

and one possible choice for a characteristic polynomial c(k)(z) for x(k+1) is
the following:

c(k)(z) := zLk−Lk−1c(k−1)(z) − zLk−(k−m+Lm−1)c(m−1)(z). (7.13)

(Remark: In general, the characteristic polynomials of minimal degree are not
uniquely determined. One can find all of them, but this is not of significance
here, since we are only interested in the length of the shortest LFSR.)
Proof of the Berlekamp-Massey Algorithm: 1. First we prove the in-
equality

Lk ≥ max{Lk−1, k + 1 − Lk−1}. (7.14)

7.11 Linear Complexity Test 103

The relation Lk ≥ Lk−1 being trivial, it remains to prove

Lk ≥ k + 1 − Lk−1. (7.15)

Assume that c(k−1)(z) generates x(k), but not x(k+1). Then it is not difficult
to show (by some elementary manipulations with Laurent series) that there
exist polynomials p(z) of degree < Lk−1 and p(z) of degree < Lk such that
the following Laurent series expansions hold:

z
p(z)

c(k−1)(z)
=

k−1∑
i=0

xiz
−i + ykz−k + . . .

and

z
p(z)

c(k)(z)
=

k∑
i=0

xiz
−i + . . .

such that xk �= yk. Hence it follows that

p(z)c(k)(z) − p(z)c(k−1)(z) = c(k−1)(z)c(k)(z)((yk − xk)z−(k+1) + . . .).

Since xk �= yk, it follows that Lk−1 + Lk − (k + 1) ≥ 0, which proves (7.15).
2. Now we are ready to prove (7.12) by induction. The induction begins at
the first jump of the sequence {Li}., i.e., for

x(�+1) = (0, 0, . . . , 0, 1) ∈ IB�+1.

Here we have L�−1 = 0 and L� = � + 1 = max{0, �+ 1− 0}, hence (7.12) (for
the beginning of the induction) is fulfilled. For the induction step, assume
that (7.12) is valid for k = m, i.e.,

Lm = Lk−1 = max{Lm−1, m + 1 − Lm−1}.

Since Lm > Lm−1 it follows that Lk−1 = Lm = m + 1 − Lm−1, hence

k − m + Lm−1 = k + 1 − Lk−1. (7.16)

Now since c/k)(z) is of degree Lk by definition, it suffices to show that it
indeed generates x(k+1), for in this case it is (by 1.) a generating LFSR of
minimal length. Put

x(k+1)(z) :=
k∑

i=0

xiz
−i.

Write the Laurent series expansions

c(m−1)(z)x(k+1)(z) =:
∞∑

i=0

αiz
−i

104 7 Tests for (Pseudo-)Random Number Generators

and

c(k−1)(z)x(k+1)(z) =:
∞∑

i=0

βiz
−i.

Then one can show that

αi = 0 (0 ≤ i ≤ m − 1 − Lm−1),

αm−Lm−1 = 1,

βi = 0 (0 ≤ i ≤ k − 1 − Lk−1),

βk−Lk−1 = 1.

If we develop, furthermore,

zLk−Lk−1c(k−1)(z)x(k+1)(z) =:
∑

i

γiz
−i

and
zLk−(k−m+Lm−1)c(m−1)(z)x(k+1)(z) =:

∑
i

νiz
−i,

then we get the facts that

γi−Lk
= 0 (Lk−1 ≤ i ≤ k − 1),

γk−Lk
= 1,

νi−Lk
= 0 (k − m + Lm−1 ≤ i ≤ k − 1),

γk−Lk
= 1.

Hence we obtain

νj−Lk
= 0 (k + 1 − Lk−1 ≤ j ≤ k − 1)

and
νk−Lk

= 1.

Hence in the power series expansion of the product

c(k)(z)x(k+1)(z) =:
∞∑

i=0

μiz
i

we have μj = 0 for 0 ≤ j ≤ k−Lk, which means that c(k)(z) indeed generates
the sequence x(k+1). �

Rueppel (1986) gives the distribution of Ln under the null hypothesis of a
genuine random sequence: From (7.12) it follows that Nn(L), which means
the number of bitsequences of length n and linear complexity L, is given by

Nn(L) =

⎧⎨
⎩

2Nn−1(L) + Nn−1(n − L) : n ≥ l > n/2
2Nn−1(L) : L = n/2
Nn−1(L) : n/2 > L ≥ 0.

7.11 Linear Complexity Test 105

From this, the following corollary can be proved by induction on n:

Corollary 7.1. P (Ln = 0) = 2−n and

P (Ln = L) =
2min{2n−2L,2L−1}

2n
(1 ≤ L ≤ n).

By standard analytic calculations, the expectation, variance, and (more gen-
erally) the generating function can be evaluated:

E(Ln) =
n

2
+

9 + (−1)n+1

36
− 1

2n
(
n

3
+

2
9
),

Var(Ln) =
86
81

− 2−n 14 − ((1 − (−1)n)/2)
27

n +
81 + (−1)n

81

−2−2n(
1
9
n2 +

4
27

n +
4
81

)

→ 86
81

(n → ∞)

(see Rueppel (1986)) and

E(etLn) =
1
2n

(
1
2

+
e(�n/2
+1)(t+2 log 2) − 1

2(4et − 1)

+etn e(n−�n/2
)(−t+2 log 2) − 1
4e−t − 1

).

For the limiting distribution of Ln, one finds

L((−1)n(Ln − n

2
− 4 + (1 − (−1)n)/2

18
) +

2
9
) w→ L(T),

where P (T = 0) = 1
2 ,

P (T = k) = 2−2k (k ≥ 1),

and
P (T = k) = 2−2|k|+1 (k ≤ −1)

(see Rukhin (2000b)).

8 Diffie-Hellman Key Exchange

8.1 The Diffie-Hellman System

Here, we will look at another public-key system, namely the Diffie-Hellman
key distribution algorithm (Diffie, Hellman (1976)). It works as follows: Let
α be a fixed non-multiple of a prime p. First, Alice chooses her private key
xA ∈ ZZp−1. She determines her public key yA by

yA = αxA ∈ ZZ∗
p .

The same is done by Bob. Now, if Alice and Bob want to generate a secret
Diffie-Hellman key, Alice requests Bob’s public key yB from the directory
where it is published and generates the Diffie-Hellman key

yxA

B = αxAxB .

Bob does the same mutatis mutandis and gets

yxB

A = αxBxA ,

which turns out to be the same as Alice’s Diffie-Hellman key! The secu-
rity of the Diffie-Hellman procedure rests on the discrete logarithm problem.
It is generally believed that solving congruential equations az = b(mod.n)
with respect to z (with a, b, n given) is computationally difficult, in a cer-
tain sense perhaps even harder than factoring integers. However, here also,
it has not been proved that solving the discrete logarithm problem is really
necessary for breaking the Diffie-Hellman system. Other cryptosystems based
on the difficulty of the discrete logarithm problem are the ElGamal and the
Massey-Omura system (see Beutelspacher (1993), p.141). The following con-
siderations are based on Massey, Waldvogel (1993). See this paper for further
details.

8.2 Distribution of Diffie-Hellman Keys

In this section, we want to give some information about the probability dis-
tribution of the keys in the Diffie-Hellman system. We start with the general

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 107-113, 2004.
© Springer-Verlag Berlin Heidelberg 2004

108 8 Diffie-Hellman Key Exchange

result and then we will show how the modulus parameter p should be cho-
sen to get a ”good” distribution (i.e., an ”almost equidistribution”) of the
Diffie-Hellman keys.

Theorem 8.1. Let p be a prime and denote by p − 1 =
∏K

i=1 pei

i the prime
factorization of p − 1. Furthermore, suppose t ∈ ZZp−1 and α a generator of
ZZ∗

p . Let

m(αt) =
K∏

i=1

pẽi

i

(0 ≤ ẽi ≤ ei) be the multiplicative order of αt. Put

R(t) := |{(xA, xB) ∈ ZZp−1 × ZZp−1 : αxAxB = αt}|.
Then we have

R(t) =
K∏

i=1

pei−1
i ((pi − 1)(ei − ẽi + 1) + δ(ẽi))

(where δ(0) := 1 and δ(e) := 0 (e �= 0)).

For the proof of Theorem 8.1 we need some algebraic and combinatoric prepa-
rations. We start with the following easy lemma (see, e.g., Hardy, Wright
(1960), Theorem 57, Massey, Waldvogel (1993), Lemma 1):

Lemma 8.1. The equation
xAxB = t

over ZZp−1 has solutions for xB iff (over ZZ) we have that gcd(xA, p − 1)|t;
moreover, in the latter case, the number of solutions for xB is gcd(xA, p−1).

So one can write
R(t) =

∑
xA∈S(t)

gcd(xA, p − 1), (8.1)

where
S(t) := {u ∈ ZZp−1 : gcd(u, p − 1)|t}.

Lemma 8.2. Assume t ∈ ZZp−1. Then for all u ∈ ZZ we have that gcd(u, p−
1)|t iff gcd(u, p − 1)| gcd(t, p − 1).

Proof: If gcd(u, p − 1)|t, then (since also gcd(u, p − 1)|p − 1) it follows that
gcd(u, p − 1)| gcd(t, p − 1). On the other hand, if gcd(u, p − 1)| gcd(t, p − 1),
then (since gcd(t, p − 1)|t), it follows that gcd(u, p − 1)|t. �

Hence
S(t) = {u ∈ ZZp−1 : gcd(u, p − 1)| gcd(t, p − 1)}. (8.2)

By a fact from elementary algebra (see Lidl, Niederreiter (1986), Theorem
1.15ii)), we have

8.2 Distribution of Diffie-Hellman Keys 109

m(αt) =
p − 1

gcd(t, p − 1)
. (8.3)

If we substitute this into (8.2), we obtain

S(t) = {u ∈ ZZp−1 : gcd(u, p − 1)| p − 1
m(αt)

}. (8.4)

Decompose p − 1 into prime factors: p − 1 =
∏K

i=1 pei

i (with ei ≥ 1 and pi

distinct prime factors). Lagrange’s Theorem, applied to αt ∈ ZZ∗
p yields

m(αt) =
K∏

i=1

pẽi

i ,

with 0 ≤ ẽi ≤ ei. So if we substitute

p − 1
m(αt)

=
K∏

i=1

pei−ẽi

i

into (8.4), we obtain

S(t) = {u ∈ ZZp−1 : gcd(u, p − 1)|
K∏

i=1

pei−ẽi

i }.

If we consider the prime factorization

gcd(u, p − 1) =
K∏

i=1

pci

i ,

then this rewrites as

S(t) = {u ∈ ZZp−1 : gcd(u, p − 1) =
K∏

i=1

pci

i , 0 ≤ ci ≤ ei − ẽi},

which, substituted into (8.1), yields

R(t) =
e1−ẽ1∑
c1=0

. . .

eK−ẽK∑
cK=0

∑
b∈T (c1,...cK)

K∏
i=1

pci

i

=
e1−ẽ1∑
c1=0

. . .

eK−ẽK∑
cK=0

K∏
i=1

pci

i

∑
b∈T (c1,...cK)

1

=
e1−ẽ1∑
c1=0

. . .

eK−ẽK∑
cK=0

K∏
i=1

pci

i |T (c1, . . . , cK)|, (8.5)

where

T (c1, . . . , cK) := {u ∈ ZZp−1 : gcd(u, p − 1) =
K∏

i=1

pci

i }. (8.6)

110 8 Diffie-Hellman Key Exchange

Lemma 8.3. For b ∈ ZZ it holds that b ∈ T (c1, . . . , cK) iff b ∈ ZZp−1 and
m(αb) =

∏K
i=1 pei−ci

i .

Proof: If we substitute

K∏
i=1

pci

i =
p − 1∏K

i=1 pei−ci

i

into (8.6), we get

T (c1, . . . , cK) = {u ∈ ZZp−1 : gcd(u, p − 1) =
p − 1∏K

i=1 pei−ci

i

}.

This implies that b ∈ T (c1, . . . , cK) iff b ∈ ZZp−1 and

gcd(b, p − 1) =
p − 1∏K

i=1 pei−ci

i

. (8.7)

From relation (8.3), (8.7) holds iff

m(αb) =
K∏

i=1

pei−ci

i . (8.8)

So b ∈ T (c1, . . . , cK) iff b ∈ ZZp−1 and (8.8) holds. �

Proof of Theorem 8.1: Lemma 8.3 yields that |T (c1, . . . , cK)| is exactly
the number of elements in ZZ∗

p with multiplicative order
∏K

i=1 pei−ci

i . It is
known (see e.g. Lidl, Niederreiter (1986), Theorem 1.15) that this number
is ϕ(

∏K
i=1 pei−ci

i) (ϕ denoting the Euler totient function). If we substitute
this into (8.5) and use the multiplicativity of the Euler totient function ϕ for
relatively prime elements and the fact that ϕ(pe) = pe−1(p − 1), we obtain

R(t) =
e1−ẽ1∑
c1=0

. . .

eK−ẽK∑
cK=0

K∏
i=1

pci

i

K∏
i=1

ϕ(pei−ci

i)

=
K∏

i=1

ei−ẽi∑
ci=0

pci

i ϕ(pei−ci

i)

=
K∏

i=1

(pei

i δ(ẽi) +
ei−ẽi−δ(ẽi)∑

ci=0

pci

i ϕ(pei−ci

i))

=
K∏

i=1

(pei

i δ(ẽi) +
ei−ẽi−δ(ẽi)∑

ci=0

pci

i pei−ci−1
i (pi − 1))

=
K∏

i=1

(pei

i δ(ẽi) + pei−1
i (pi − 1)

ei−ẽi−δ(ẽi)∑
ci=0

1)

8.2 Distribution of Diffie-Hellman Keys 111

=
K∏

i=1

(pei

i δ(ẽi) + pei−1
i (pi − 1)(ei − ẽi − δ(ẽi) + 1))

=
K∏

i=1

pei−1
i ((pi − 1)(ei − ẽi + 1) + δ(ẽi)).�

By a simple calculation one deduces from Theorem 8.1:

Corollary 8.1. If Alice and Bob choose their private keys XA, resp. XB,
independently and uniformly at random in ZZp−1, then

P (αXAXB = αt) =
1

p − 1

K∏
i=1

(
pi − 1

pi
(ei − ẽi + 1) +

δ(ẽi)
pi

). (8.9)

Let pmin resp. pmax be the minimum, resp. maximum, possible value (over
all t ∈ ZZp−1) of the expression P (αxAxB = αt). From Corollary 8.1 one sees
that the minimum value is attained if ei = ẽi for all i = 1, 2, . . . , K, i.e. if the
m(αt) = p − 1. This yields

Corollary 8.2.

pmin =
1

p − 1

K∏
i=1

pi − 1
pi

≈ 1
p − 1

.

This means that pmin is smaller than the average key probability by only
a small factor. On the other hand, the probability P (αxAxB = αt) becomes
maximum if ẽ1 = ẽ2 = . . . ẽK = 0, i.e., if m(αt) = 1. Hence

Corollary 8.3.

pmax =
1

p − 1

K∏
i=1

(ei
pi − 1

pi
+ 1).

One can also show:

Corollary 8.4. If Alice and Bob choose their private keys independently and
uniformly in ZZ∗

p−1, then the Diffie-Hellman keys are uniformly distributed in
ZZ∗

p−1, i.e.,

P (αXAXB = αt) =
1

ϕ(p − 1)
(t ∈ ZZ∗

p−1)

and zero else.

Proof: Let

R∗(t) := {(xA, xB) ∈ (ZZ∗
p−1)

2 : αxAxB = αt}
= {(xA, xB) ∈ (ZZ∗

p−1)
2 : xAxB = t(mod.(p − 1))}

= {(xAx−1
a t) : xA ∈ ZZ∗

p−1}.

112 8 Diffie-Hellman Key Exchange

So

|R∗(t)| =
{

0 : t �∈ ZZ∗
p−1

ϕ(p − 1) : t ∈ ZZ∗
p−1.

(8.10)

Furthermore,

P (αXAXB = αt) = (
1

ϕ(p − 1)
)2|R∗(t)|. (8.11)

Substituting (8.10) into (8.11) yields the assertion. �

8.3 Strong Primes

In accordance with Massey, Waldvogel (1993), paragraph 4, we will call a
prime p a strong prime if it is of the form p = 2q + 1 with q prime. From
Corollaries 8.2 and 8.3 we obtain, when p is a large strong prime:

pmin =
1

p − 1
· 1
2
· q − 1

q
≈ 1

p − 1
· 1
2

and
pmax =

1
p − 1

· 3
2
· (q − 1

q
+ 1) ≈ 1

p − 1
· 3.

So in this case, pmin and pmax are of the same order of magnitude (namely
the average key probability). One can also show the following relationship
with the entropy:

Corollary 8.5. If p is a strong prime, then

log2(p − 1) − 2 < H(αXAXB) ≤ log2(p − 1). (8.12)

Proof: With the aid of Corollary 8.3 we calculate

H(αXAXB) ≥ −
∑

t∈ZZp−1

P (αXAXB = αt) log2 pmax

= − log2 pmax

∑
t∈ZZp−1

P (αXAXB = αt)

= − log2 pmax

= − log2(
1

p − 1

K∏
i=1

(ei
pi − 1

pi
+ 1))

= log2(p − 1) −
K∑

i=1

log2(ei
pi − 1

pi
+ 1)

> log2(p − 1) −
K∑

i=1

log2(ei + 1).

8.3 Strong Primes 113

This proves the left member of inequality (8.12). The right member is trivial,
since it indicates the maximum possible entropy.�
This shows that for large strong primes, the entropy of the Diffie-Hellman key
is practically maximum possible, or - in other words - to use strong primes is
very good. Without proof we state Corollary 4 of Massey, Waldvogel (1993),
which indicates which primes p are worst in the sense that they give large
values of pmax:

Theorem 8.2. If p − 1 has the prime factorization p − 1 =
∏K

i=1 pei

i , then
an approximate upper bound for pmax is given by the expression

1
p − 1

(
log(p − 1)

κ
)κ

[κ]∏
i=1

1
log qi

,

where qi denotes the i-th prime,

κ :≈ log(p − 1)
e(log log(p − 1) − 1)

− 1,

K :≈ κ,

pi = qi,

ei ≈
logqi

(p − 1)
κ

,

and [x] means the rounded value of the real number x to the next integer.

The proof of Theorem 8.2 makes use of the Prime number Theorem, which
states that

k ∼ qk

log qk
(k → ∞).

(In fact, Čebyšev’s weak form of it suffices.)
For p → ∞, it was shown in Canetti et al. (1999) that the Diffie-Hellman
trjples (αXA , αXB , αXAXB) (α a primitive root modulo p) are uniformly dis-
tributed in the sense of Weyl, i.e. interpreted (in the standard way) as ele-
ments of the 3-dimensional unit cube [0, 1]3. Their proof is based on estimates
for exponential sums and the number of solutions of exponential equations.

9 Differential Cryptanalysis

9.1 The Principle

So-called differential cryptanalysis belongs to the class of chosen-plaintext
attacks and was invented by Biham and Shamir (1991). It is a method of
cryptanalysis for block ciphers (in contrast to stream ciphers). (In order to
avoid misunderstandings from the beginning, note that the term ”differen-
tial” is used because differences of elements of a commutative group G will
be compared and it has nothing to do with calculus!) Let us describe the
setting in detail. An r-round block cipher is an encrpytion algorithm that
works as follows: For the first round, given an input X(1) and a round
key Z(1), the (deterministic) ”enciphering function” f produces an output
Y (1) = f(X(1), Z(1)). The output of the first round is used as input for
the second round X(2) := Y (1), and as output of the second round we get
Y (2) = f(X(2), Z(2)), etc. The final output of the algorithm will be the out-
put of the r-th round Y (r). Here, all occurring data are blocks of a certain
length whose elements belong to some finite abelian group, in practice of-
ten some residue ring. The model assumption will be that all round keys
Z(1), Z(2), . . . Z(r) are chosen as independent uniformly distributed random
variables, for in general, only in this case do reasonable theoretic results be-
come available. But interestingly enough, in practice, it seems to work as
well or even better when the round keys are determined by some key sched-
ule for a ”small” overall key. Now the idea of differential cryptanalysis is
that if one takes pairs of round inputs (X(i), X∗(i)) and compares them with
the round output pairs (Y (i), Y ∗(i)), often there are relations between their
differences ΔX(i) := X(i) − X∗(i) and ΔY (i) := Y (i) − Y ∗(i) that allow
as to infer information on the round key Z(i). Informally speaking, the enci-
phering function f is called cryptographically weak if for given ΔY (r − 1),
Y (r), Y ∗(r) for a relatively small number of input pairs (X(1), X∗(1)), one
can ”easily” find the round key Z(r) or at least some information about it.
A pair of differences (α, β) considered as values of a pair of first-round input
and i-th-round output (α, β) = (ΔX(1), ΔY (i)) is termed an i-round differ-
ential (or characteristic). Differential cryptanalysis is successful if there are
differentials that are significantly more probable than others if the round keys
Z(1), Z(2), . . . , Z(r−1) are chosen uniformly at random. Now the differential
attack proceeds as follows:

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 115-123, 2004.
© Springer-Verlag Berlin Heidelberg 2004

116 9 Differential Cryptanalysis

– Choose an (r − 1)-round differential (α, β) for which the conditional prob-
ability P (ΔY (r − 1) = β | ΔX(1) = α) is relatively large.

– Take a plaintext X(1) chosen uniformly at random and encrypt X(1) and
X∗(1) := X(1) + α to get the ciphertexts Y (r) and Y ∗(r).

– Assume that β is the true difference ΔY (r−1). Find all values of the round
key Z(r) that are consistent with r-round input difference β and output
difference ΔY (r) = Y (r) − Y ∗(r).

– Repeat the two preceding steps until some possible Z(r) appears signifi-
cantly more frequently than all the others. Then use this value as a guess
for the r-th round key.

– Do all these steps iteratively for r − 1, r − 2, . . . , 1.

The creative act needed to mount a differential attack lies in the first step,
i.e., to find a significantly more probable differential. This is why information
about the distribution of differentials is important. We will treat this question
in the next section.
Fortunately, by the following theorem due to Lai, Massey, and Murphy, there
is a lower bound on the complexity of a differential attack. Here, ”complexity”
means the number of times an encryption of a chosen plaintext pair must be
made.

Theorem 9.1. Let G be an abelian group (in particular, a residue ring), N
be the block length, and put

pmax := max
α,β∈G

{P (ΔY (r − 1) = β | ΔX = α}.

Then the average complexity C of the differential cryptanalysis has the fol-
lowing lower bound:

C ≥ 2
pmax − 1

2N−1

.

Proof: If the attack succeeds, then the anticipated value β has to occur at
least once more than a uniformly randomly chosen other β′. In K pairs of
encryptions, on the average β occurs Kpmax and β′ occurs K(2N−1)−1 times.
Thus

Kpmax − K
1

2N − 1
≥ 1,

which, by resolving with respect to K, yields the assertion. �

So, the smaller pmax (i.e., the less there are significantly more probable dif-
ferentials), the bigger the complexity becomes.
Of course, the cardinal question here is how to design a cipher that, against
differential cryptanalysis, is reasonably secure. It turns out that for this, the
notion of a Markov cipher seems to be a natural condition. The following
definition is due to Lai, Massey, and Murphy.

Definition 9.1. An r-round iterated block cipher is called a Markov cipher
if, when the first round key Z(1) is chosen uniformly at random, then the
probability

9.1 The Principle 117

P (ΔY (1) = β | ΔX(1) = α, X(1) = γ)

is independent of γ for all α, β, γ.

To be exact, we need the model assumption of stochastic equivalence:

Definition 9.2. The assumption of stochastic equivalence means that
P (ΔY (r − 1) = β | ΔX(1) = α) has the same value for fixed round keys
Z(1), Z(2), . . . , Z(r−1) as if these round keys Z(i) (i = 1, 2, . . . , r − 1) were
independent and uniformly distributed.

As Biham and Shamir have shown, e.g., DES is a Markov cipher. The relation
of the above definition to Markov chains is the following theorem due to Lai,
Massey, and Murphy:

Theorem 9.2. If in an r-round Markov cipher, all round keys are chosen in-
dependently and uniformly at random, then {ΔY (i)}0≤i≤r is a Markov chain.

(Here, the term ”Markov chain” will always mean ”homogeneous” Markov
chain.)
Proof of Theorem 9.2: We have

P (ΔY (1) = β1, ΔY (2) = β2, . . . , ΔY (r) = βr | ΔY (0) = β0)

=
r∏

i=1

P (ΔY (i) = βi | ΔY (0) = β0, ΔY (1) = β1, . . . , ΔY (i − 1) = βi−1).

However,

P (ΔY (i) = βi | ΔY (0) = β0, ΔY (1) = β1, . . . , ΔY (i − 1) = βi−1)

=
∑
γ∈G

P (ΔY (i) = βi, Y (i − 1) = γ | ΔY (0) = β0, ΔY (1) = β1, . . . ,

ΔY (i − 1) = βi−1)

and

P (ΔY (i) = βi, Y (i − 1) = γ | ΔY (0) = β0, ΔY (1) = β1, . . . , ΔY (i − 1) = βi−1)

= P (Y (i − 1) = γ | ΔY (0) = β0, ΔY (1) = β1, . . . , ΔY (i − 1) = βi−1)

·P (ΔY (i) = βi | Y (i − 1) = γ, ΔY (0) = β0, ΔY (1) = β1, . . . , ΔY (i − 1)= βi−1).

By the independence of the round keys and the definition of a Markov cipher,
we have

P (ΔY (i) = βi | Y (i − 1) = γ, ΔY (0) = β0, ΔY (1) = β1, . . . ,

ΔY (i − 1) = βi−1)
= P (ΔY (i) = βi | Y (i − 1) = γ, ΔY (i − 1) = βi−1)
= P (ΔY (i) = βi | ΔY (i − 1) = βi−1).

118 9 Differential Cryptanalysis

So we get

P (ΔY (i) = βi | ΔY (0) = β0, ΔY (1) = β1, . . . , ΔY (i − 1) = βi−1)

= P (ΔY (i) = βi | ΔY (i − 1) = βi−1)

·
∑
γ∈G

P (Y (i − 1) = γ | ΔY (0) = β0, ΔY (1) = β1, . . . , ΔY (i − 1) = βi−1).

Since the latter sum adds up to 1, we finally obtain

P (ΔY (1) = β1, ΔY (2) = β2, . . . , ΔY (r) = βr | ΔY (0) = β0)

=
r∏

i=1

P (ΔY (i) = βi | ΔY (i − 1) = βi−1).

Homogeneity follows from the fact that all round keys have the same (uni-
form) distribution. �

Lemma 9.1. For any Markov cipher, the uniform distribution on GN\{e}
is a stationary distribution of the Markov chain {ΔY (i)}0≤i≤r.

Proof: Put Y (i) = X(i + 1) = e and choose Y ∗(i) = X∗(i + 1) uniformly on
GN\{e} at random. Then, since the cipher is Markov, the random variable
ΔY (i) obeys itself a uniform distribution on GN\{e}. For any fixed (i + 1)-
th round key z = Z(i+1), the random variable Y ∗(i + 1) = f(X∗(i + 1), z)
is uniformly distributed on GN\{f(e, z)}, since f(., z) is invertible. Thus for
fixed z, the random variable ΔY (i+1) is uniformly distributed over GN\{e}.
Hence the same is also true without conditioning on Z(i+1). �.
A stronger notion than a stationary probability measure of a Markov chain is
the concept of a so-called steady-state distribution. This means the following:

Definition 9.3. The Markov chain {ΔY (i)}i≥0 is said to have the steady-
state distribution π if for all α, β, ΔY (.) it holds that

P (ΔY (i) = β | ΔY (0) = α) → π(β) (i → ∞).

If a Markov chain has a steady-state distribution, then this is its unique
stationary distribution. Now by the following theorem due to Lai, Massey, and
Murphy, it turns out that Markov ciphers having a steady-state distribution
are ”immune” to differential cryptanalysis.

Theorem 9.3. Under the assumption of stochastic equivalence, Markov ci-
phers having a steady-state distribution are (asymptotically as the number of
rounds tends to infinity) immune to differential cryptanalysis (in the sense
that the average complexity tends to ∞).

Proof: From Theorem 9.1 and the fact that from Lemma 9.1 pmax → 1
2N−1 ,

we have C → ∞ as the number of rounds tends to infinity. �

9.2 The Distribution of Characteristics 119

9.2 The Distribution of Characteristics

As mentioned in Section 9.1, it is important to know the distribution of
differentials under the null hypothesis that the keys are chosen uniformly at
random. In this section, we will work in somewhat more generality in the
sense that we will look at additive characteristics in powers of groups ZZq.
For q = 2 this is just classical differential cryptanalysis, since in this case, +
and − are the same. Let q ∈ IN , q ≥ 2 and fix ΔX, ΔY ∈ (ZZq)m. Let π be
a uniformly distributed random permutation of (ZZq)m (which occurs due to
a randomly chosen key K) and consider the random variable Λπ(ΔX, ΔY)
giving the number of (unordered) pairs {X, X ′} ⊂ (ZZq)m of plaintexts X, X ′

such that X + X ′ = ΔX and Y + Y ′ = ΔY , where Y = π(X), Y ′ = π(X ′)
are the corresponding ciphertexts.
We begin with an elementary algebraic lemma, whose proof follows from
standard properties of linear diophantine equations.

Lemma 9.2. Let q ∈ IN , q ≥ 2 and k ∈ ZZ. Consider the equation

2x = k (mod. q) (x ∈ ZZq). (9.1)

If q is odd, then (9.1) has exactly one solution mod. q. If q is even and k
is odd, then (9.1) has no solution. If q and k are both even, then (9.1) has
exactly two solutions mod. q.

The next lemma is the so-called ”pairing theorem”, a combinatorial assertion.

Lemma 9.3. Let A = {a1, a2, . . . , a2d} and B = {b1, b2, . . . , b2d} be alpha-
bets with 2d distinct elements. Assume ΠA and ΠB are sets of unordered
pairs such that ai (resp. bi) occurs in exactly one pair of ΠA resp. ΠB

(i = 1, 2, . . . , 2d). Denote by Ψ(d) the number of bijections ψ : A → B such
that for pairs {ai, aj} ∈ ΠA we have {ψ(ai), ψ(aj)} �∈ ΠB. Then we have

Ψ(d) =
d∑

k=0

(−1)k

(
d

k

)2

2kk!(2d − 2k)!. (9.2)

Proof: We order the set ΠB as {{b′i, b′i+d}}1≤i≤d and let P (i) be the number
of bijections ψ : A → B that map some pair of ΠA to the pair {b′i, b′d+i} in
ΠB, i.e.,

P (i) := {ψ : ψ(a) = b′i, ψ(a′) = b′d+i, {a, a′} ∈ ΠA}.
By the principle of inclusion-exclusion we get

Ψ(d) = (2d)! − |
⋃

1≤j≤d

P (j)|

= (2d)! +
∑

∅�=S⊂{1,2,...,d}
(−1)|S||

⋂
j∈S

P (j)|. (9.3)

120 9 Differential Cryptanalysis

If we define (by symmetry)

P (d, k) := P (1, 2, . . . , k)
= P (i′1, i

′
2, . . . , i

′
k)

:= |
⋂

1≤j≤k

P (i′j)|, (9.4)

we obtain the relation

Ψ(d) = (2d)! +
d∑

k=1

(−1)k

(
d

k

)
P (d, k). (9.5)

Now we order ΠA in the same way as ΠB, i.e., as {{a′
i, a

′
i+d}}1≤i≤d. Then

P (d, k) can be interpreted as the number of functions ψ : A → B for which
there are exactly k pairs {a′′

i , a′′
i+d} from ΠA such that ψ(a′′

i) = b′i and
ψ(a′′

i+d) = b′′i+d (i = 1, 2, . . . , k). By elementary combinatorial considerations,
it turns out that there exist

(
d
k

)
ways to select the k pairs {a′′

i .a′′
i+d} from ΠA,

then k! possibilities to assign the pairs {a′′
i , a′′

i+d} to the pairs {b′i, b′i+d}, and
at the end 2k ways to assign {a′

i, a
′
i+d} to a particular pair in ΠB. Finally,

the number of ways to assign the elements of

A\
⋃

1≤i≤k

{a′′
i , a′′

i+d}

is given by (2d − 2k)!. So

P (d, k) =
(

d

k

)
2kk!(2d − 2k)! (9.6)

and the assertion follows from (9.5). �.

Theorem 9.4. Suppose q ∈ IN , q ≥ 2, q even. Let ΔX = (�X1,�X2, . . . ,
�Xm), ΔY = (�Y1,�Y2, . . . ,�Ym) ∈ (ZZq)m such that at least one of the
�Xi and at least one of the �Yi is odd. Then the distribution of the random
variable Λπ(ΔX, ΔY) tends to the Poisson distribution given by

P (H = k) = e−1/22−kk!−1 (k ∈ IN0) (m → ∞). (9.7)

Proof: If X+X ′ = ΔX , then from Lemma 9.2 it is not possible that X = X ′.
Thus, from Lemma 9.3 the number of permutations π of (ZZq)m such that if
X + X ′ = ΔX then π(X) + π(X ′) �= ΔY is given by Ψ(qm), where

Ψ(2d) :=
d∑

k=0

(−1)k

(
d

k

)2

2kk!(2d − 2k)!. (9.8)

9.2 The Distribution of Characteristics 121

We get (for u in a neighborhood of 1), for the generating function of
Δπ(ΔX, ΔY),

E(uΛπ(ΔX,ΔY)) =
qm/2∑
k=0

(
qm/2

k

)2
ukk!2kΨ(qm − 2k)

qm!
. (9.9)

[From the definition of P (d, k) and (9.6) it follows that the expression

P (d, k)Ψ(d − k)
(2d − 2k)!

denotes the number of functions ψ that take exactly k pairs from ΠA to
(b′i, b

′
i+k) (with some abuse of notation). Then the number of permutations

of (ZZq)m for which k pairs of sum ΔX can be mapped into k fixed pairs of
difference ΔY is given by the expression

∑
S⊂(ZZq)m−1,|S|=k

P (qm−1, k)Ψ(qm−1 − k)
(qm − 2k)!

=
(

qm−1

k

)
.

From (9.6), we get

|{π : Λ(ΔX, ΔY) = k}| =
(

qm−1

k

)
P (qm−1, k)Ψ(qm−1 − k)

(qm − 2k)!

=
(

qm−1

k

)2

k!2kΨ(qm−1 − k).

The assertion follows.]
We have to determine the limit of expression (9.9) as m → ∞. For this, we
first calculate the limit of (9.8) (with d = qm/2) as m → ∞. Put

T (m, k) := (−1)k

(
qm/2

k

)2

2kk!(qm − 2k)!. (9.10)

Then for the ratio of two consecutive (with respect to k) such expressions

T (m.k + 1)
T (m, k)

= −2
(qm/2 − k)2

(k + 1)(qm − 2k)(qm − 2k − 1)

= −2
(qm/2 − k)2

4(k + 1)(qm/2 − k)2 − (k + 1)(qm − 2k)

= −(2(k + 1)(1 − 1
qm − 2k

))−1. (9.11)

So asymptotically by successive multiplications of the terms (9.11) we obtain

T (m, k)
T (m, 0)

=
(−1)k

2kk!
εk, (9.12)

122 9 Differential Cryptanalysis

where εk → 1 when k ∈ o(qm/2) (m → ∞), ε0 := 1, and εk = O(qm)
when k �∈ o(qm/2) (m → ∞); hence (for Ψ as in (9.8)) T (m, 0) behaves
asymptotically as Ψ(qm) in the sense that

Ψ(qm)
T (m, 0)

→ 1√
e

(m → ∞). (9.13)

Now, in view of calculating the generating function with variable u, we define
an analogous expression as (9.10) (for u in a neighborhood of 1) but including
an additional term uk, replacing the last factorial in (9.10) by Ψ , and without
change of sign (−1)k:

Tu(m, k) :=
(

qm/2
k

)2

ukk!2kΨ(qm − 2k). (9.14)

Then, we get the ratio

Tu(m, k)
Tu(m, 1)

=
1
k!

(
u

2
)−(k−1), (9.15)

hence the generating function has asymptotic behavior

E(uΛπ(ΔX,ΔY)) ∼ 2eu/2Tu(m, 1)
uqm!

(m → ∞). (9.16)

From (9.14) and an elementary estimation, the term Tu(m, 1) in (9.16) be-
haves as

Tu(m, 1) ∼ 2(qm/2)2uΨ(qm − 2)

∼ q2m2−1 u√
e
(qm − 2)! (m → ∞), (9.17)

thus from (9.16) and (9.17)

E(uΛπ(ΔX,ΔY)) ∼ eu/2q2m(qm − 2)!√
eqm!

→ e(1/2)(u−1) (m → ∞).� (9.18)

Next, let us treat the case where q is odd. In this situation, for any ΔX there
is, from Lemma 9.2, exactly one X such that 2X = ΔX .

Theorem 9.5. Suppose q ∈ IN , q ≥ 3, q odd. Let ΔX, ΔY ∈ (ZZq)m. Then
the distribution of the random variable Λπ(ΔX, ΔY) tends weakly to the dis-
tribution (9.7) as m → ∞.

Proof: Let X ∈ ZZq be the unique solution of (9.1) and let X0 = (X, X,
. . . , X)(∈ (ZZq)m). In contrast to the proof of Theorem 9.4, one has to count

9.2 The Distribution of Characteristics 123

those cases where π(X0) = X0 and π(X0) �= X0 separately, which yields as
analogue of (9.9) the expression

E(uΛπ(ΔX,ΔY))

=
1

qm!
(
(qm−1)/2∑

k=0

(
(qm − 1)/2

k

)
ukk!2kΨ(qm − 1 − 2k)

+(qm − 1)
(qm−1)/2∑

k=1

(
(qm − 1)/2

k − 1

)
uk−1(k − 1)!2k−1Ψ(qm + 1 − 2k)). (9.19)

Now the same type of limit procedure as in the proof of Theorem 9.4, applied
separately to both sums on the right-hand side of (9.19), yields the result. �

What remains is the case where q and all �Xi,�Yi are even. Here, by Lemma
9.2, equation (9.1) has exactly 2 solutions, hence we get (by analogy to the
foregoing cases) the following result:

Theorem 9.6. Suppose q ∈ IN , q ≥ 2, q even. Let ΔX = (�X1,�X2,
. . . ,�Xm), ΔY = (�Y1,�Y2, . . . ,�Ym) ∈ (ZZq)m such that all �Xi and all
�Yi are even. Then the distribution of the random variable Λπ(ΔX, ΔY)/2m

tends weakly to the distribution (9.7) as m → ∞.

10 Semantic Security

At the end of Chapter 1, in connection with the One-Time Pad, we dis-
cussed the notion of perfect secrecy. The effect of perfect secrecy is that the
adversary, even if he has unlimited resources, can not gain any information
about the plaintext from the ciphertext, except its length (if this is not a
known parameter). The fact that any cryptosystem leaks the information
about the length of the plaintext will be proved below (Theorem 10.1). An-
other notion, related to perfect secrecy, is that of so-called semantic security.
Roughly speaking, semantic security is a polynomially bounded variant of
perfect security, i.e., one assumes that the adversary has only polynomially
bounded resources.
Let us fix definitions and notations.
In this chapter, we will use the term ”random variable” in a somewhat non-
classical sense:

Definition 10.1. A random variable is a sequence {Xn}n≥1 of random vari-
ables Xn in the classical sense defined over some common probability space
(Ω,A, P) such that there is a polynomial Q so that (for all n) Xn ranges
over IBQ(n)−1. The random variable is called polynomial-time, if there exists
a probabilistic polynomial-time algorithm A such that

P (A(1n) = x) = P (Xn = x)

(1n means the string (1, 1, . . . , 1) ∈ IBn).

Definition 10.2. A cryptosystem is a triple (G, E, D) of probabilistic poly-
nomial-time algorithms such that

– For the input 1n, algorithm G (the key generator) outputs two bitstrings
G1(1n) and G2(1n) both of length n.

– For every pair (e, d) of encrpytion/deciphering keys in the range of G(1n),
the encryption algorithm E and the deciphering algorithm D satisfy, for
each plaintext x ∈ IBn, the relation

P (Dd(Ee(x)) = x) = 1.

– There exists a polynomial Q such that for all e, x ∈ IBn, we have that the
random variable Ee(x) ranges over IBQ(n).

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 125-133, 2004.
© Springer-Verlag Berlin Heidelberg 2004

126 10 Semantic Security

The last requirement has the disadvantage that it always reveals the length |x|
of the plaintext. However, cryptosystems always leak the information about
the length of the plaintext, as the following theorem shows:

Theorem 10.1. Let (G, E, D) be a cryptosystem not necessarily satisfying
the length conditions imposed in Definition 10.2. (In particular, E is defined
for every possible key and every plaintext and the only restriction on the
distribution of the length of the ciphertext produced by E is that it must be
polynomial in the length of the inputs to E.) Then this scheme can not hide
the length of the plaintext.

Proof: Let (in accordance with Definition 10.2), e be an encryption key in
the range of G(1n) and consider the random variables Ee(1m) and Ee(1m+1)
for some m that is polynomial in |e| (the length of e). If the encryption
hides the length of the plaintext, then these two random variables have
to be polynomially indistinguishable. Let Q be the polynomial bounding
the running time of the encryption algorithm E and let m take the val-
ues |e|, |e| + 1, . . . , Q(2|e|) + 1. Then we find that the random variables
Ee(1|e|) and Ee(1Q(2|e|)+2) are polynomially indistinguishable, hence (since
P (|Ee(1|e|)| ≤ Q(2|e|)) = 1) we have the lower bound

P (|Ee(1Q(2|e|)+2)| ≤ Q(2|e|)) > 2/3.

But from the fact that the code must be uniquely decipherable, it follows
that for at most half of the bitstrings x of length |x| = Q(2|e|) + 2 it holds
that

P (|Ee(x)| ≤ Q(2|e|) + 2) > 1/3.

So there exists an x ∈ IBQ(2|e|)+2 such that Ee(x) and Ee(1Q(2|e|)+2) are
distinguishable by just measuring their lengths, i.e. in polynomial time. This
is a contradiction.�
Now we come to the definition of semantic security.
For a set Σ, the symbol Σ∗ denotes the set of all finite sequences of elements
of Σ.

Definition 10.3. A (secret-key) cryptosystem (G, E, D) as in Definition
10.2 is called semantically secure if, for every probabilistic polynomial-time
algorithm A, there exists a probabilistic polynomial-time algorithm A′ such
that for every polynomial-time random variable {Xn}n≥1, every polynomial-
time computable function h : IB∗ → IB∗, every function f : IB∗ → IB∗, every
positive constant c, and all sufficiently large n,

P (A(EG1(1n)(Xn), h(Xn), 1n) = f(Xn))

< P (A′(|Xn|, h(Xn), 1n) = f(Xn)) + n−c.

This definition can be explained as follows: The role of the function h is to
provide partial information on Xn to both algorithms, which then try to find

10 Semantic Security 127

f(Xn). As we shall see in the sequel, the meaning of semantic security is,
roughly speaking, that the distribution of the random variables

A(E(Xn), h(Xn), 1n)

and
A′(|Xn|, h(Xn), 1n)

are close in a certain sense. We will see that if also the function f is supposed
to be computable in polynomial time, then the definition of semantic security
remains equivalent. In Definition 10.2, we considered secret-key cryptosys-
tems. The corresponding notion of semantic security of a public-key system
should be formulated in the sense that the public key is given to the algorithm
A as additional input. Evidently, any public-key system that is semantically
secure has a probabilistic encryption algorithm (otherwise, look at a random
variable Xn that is uniformly distributed on the two-point set {0n, 1n}).
Now we will show that semantic security is equivalent to so-called indistin-
guishable encryption, which means the following:

Definition 10.4. A (secret-key) cryptosystem (G, E, D) as in Definition
10.2 has hte indistinguishable encryption property if, for every polynomial-
time random variable {Tn}n≥1 = {(Xn, Yn, Zn)}n≥1 with |Xn| = |Yn|, every
probabilistic polynomial-time algorithm A, every positive constant c, and all
sufficiently large n, we have that

|P (A(Zn, EG1(1n)(Xn)) = 1) − P (A(Zn, EG1(1n)(Yn)) = 1)| < n−c.

The random variable Zn has to be interpreted as additional information, on
the space of plaintexts, given to algorithm A, which tries to distinguish the
encryptions of Xn and Yn. An analogous remark as we have stated for se-
mantic security of public-key systems holds here: The public key (i.e. G1(1n))
should be taken as an additional input to the algorithm.
Our goal now will be to show that semantic security and indistinguishable
encryption are equivalent properties. Especially the direction that indistin-
guishable encrpytion implies semantic security is very important, since it
often seems easier to prove the former than the latter.

Theorem 10.2. A (secret-key) cryptosystem as in Definition 10.2 is seman-
tically secure iff it has the property of indistinguishable encryption.

For the proof of Theorem 10.2 we verify both directions by individual propo-
sitions, which are both in fact stronger than the corresponding direction of
Theorem 10.2 and thus of a certain own interest.

Proposition 10.1. Let (G, E, D) have the property of indistinguishable en-
cryption and suppose, furthermore, that Zn = XnYn. Then the system is
semantically secure.

128 10 Semantic Security

Proof: Let us assume that the system is not semantically secure. We will
prove that in this case it has distinguishable encryptions with Zn = XnYn.
This will be done by showing that if for some {Xn}n≥1, f , h as in Definition
10.3, and a probabilistic polynomial-time algorithm A, there exists a proba-
bilistic polynomial-time algorithm A′ such that if A guesses f(Xn) from the
encrypted value EG1(1n)(Xn) and h(Xn) better than A′ does on input |Xn|
and h(Xn), then one can distinguish the encryptions of Xn and Yn := 1|Xn|

(using Zn = XnYn as auxiliary input). Let A be a probabilistic polynomial-
time algorithm that tries to guess partial information (i.e., f(Xn)) from the
encryption of Xn and the a priori information h(Xn). Namely, on input
EG1(1n)(x) and h(x), the algorithm A tries to guess f(x). Now we construct
a probabilistic polynomial-time algorithm A′ that has as good performance
but without getting the input EG1(1n)(x). This algorithm will run algorithm
A with input EG1(1n)(1|x|) and h(x). We will show that

P (A(EG1(1n)(Xn), h(Xn), 1n) = f(Xn))

< P (A′(|Xn|, h(Xn), 1n) = f(Xn)) + n−c

or, as is equivalent,

P (A(EG1(1n)(Xn), h(Xn), 1n) = f(Xn))

< P (A(EG1(1n)(1|Xn|), h(Xn), 1n) = f(Xn)) + n−c.

Assume the contrary and let c > 0 be such that the above fails for infinitely
many n. Then we have

P (Xn ∈ Bn) ≥ 1
2
n−c,

where Bn is the set of bitstrings x of length m with the property

P (A(EG1(1n)(x), h(x), 1n) = f(x))

> P (A(EG1(1n)(1n), h(x), 1n) = f(x)) +
1
2
n−c.

If Dn denotes the set of bitstrings of length m satisfying

|P (A(EG1(1n)(x), h(x), 1n) = ξx)

−P (A(EG1(1n)(1n), h(x), 1n) = ξx)| >
1
2
n−c (10.1)

for some ξx, then we have

P (Xn ∈ Dn) ≥ 1
2
n−c.

We now define a random variable {Zn}n≥1 = {Xn ·1|Xn|}n≥1 and construct a
polynomial-time probabilistic algorithm A1 that, given auxiliary information

10 Semantic Security 129

(Xn, 1m) (where m := |Xn|), distinguishes the encryptions of Xn ∈ Dn and
1m. The algorithm A1 is defined as follows:
On input x, 1m, and Ee(w) (where w ∈ {x, 1m} and e is in the range of
G1(1n)), the algorithm has two steps. Roughly speaking, the first step consists
of checking if x ∈ Dn and, if yes, then to find a ξx satisfying relation (10.1).
(This ξx can be interpreted as some sort of ”witness” for the fact that x ∈
Dn.) Then, in the second step, the algorithm ”guesses” the identity of w by
checking if A(Ee(w), h(x), 1n) = ξx or not. In detail:

– Ignoring Ee(w), the algorithm first gathers information on the statistics of
the random variables A(EG1(1n)(x), h(x), 1n) and A(EG1(1n)(1m), h(x), 1n)
by computing h(x) and running A polynomially often (depending on
the desired accuracy and determinable by the following equation (10.3)),
each time giving to A as input a randomly computed EG1(1n)(x), resp.
EG1(1n)(1m), and the data h(x) and 1n. Put

px,v(ξ) := P (A(EG1(1n)(v), h(x), 1n) = ξ) (10.2)

and let p̂x,v(ξ) be a random variable representing the estimator of px,v(ξ)
that is obtained by polynomially many runs, the polynomial again defined
such that (10.3) (see infra) holds. If we fix x and v, then with probability
at least say 1 − 2−n, for every possible value ξ we have that p̂x,v(ξ) is a
good estimator for px,v(ξ) in the sense that

|px,v(ξ) − p̂x,v(ξ)| <
1
16

n−2c. (10.3)

If x ∈ Dn, it holds that

|px,x(ξ) − p̂x,1m(ξ)| >
1
2
n−c.

So from (10.3) we find that with very high probability, if x ∈ Dn, we can
find a ξ∗ with

|p̂x,x(ξ∗) − p̂x,1m(ξ∗)| >
3
8
n−c. (10.4)

If such a ξ∗ cannot be found (as just mentioned, this occurs with very low
probability), then the algorithm A1 terminates here and outputs (oblivi-
ously of Ee(w)) the value 1.

– Assume we have found the above-mentioned ξ∗. W.l.o.g. we may assume
that

p̂x,x(ξ∗) > p̂x,1m(ξ∗) +
3
8
n−c.

Now algorithm A1 runs the algorithm A(Ee(w), h(x), 1n) and gives 1 as
output iff A yields output ξ∗.

It remains to analyze the performance of the just-defined algorithm A1 (i.e.,
to prove that it is really a probabilistic polynomial-time algorithm) on input
Ee(w) (where w ∈ {x, 1m}), 1m, and x. We have to distinguish 3 possible
cases:

130 10 Semantic Security

– If x ∈ Dn (this event will be denoted by C1 in the sequel), w.l.o.g. we may
assume that the ξ∗ (which has been found with probability at least 1−2−n

say) satisfies

px,x(ξ∗) ≥ px,1m(ξ∗) +
3
8
n−c.

Then it follows that

P (A1(x, 1m, EG1(1n)(x)) = 1) − P (A1(x, 1m, EG1(1n)(1m)) = 1)

> (1 − 2−n)
3
8
n−c − 2−n

>
3
8
n−c − 1

32
n−2c.

– If x �∈ Dn, yet there exists a ξ with

|px,x(ξ) − px,1m(ξ)| ≥ 1
8
n−2c

(the event of these two conditions will be denoted by C2), then with prob-
ability at least say 1− 2−n, one of the following two alternatives happens:
Either A1 has terminated after its first step or the expression (estimator)

p̂x,x(ξ∗) − p̂x,1m(ξ∗)

has the same sign as its ”true” counterpart

px,x(ξ∗) − px,1m(ξ∗).

It follows that

P (A1(x, 1m, EG1(1n)(x)) = 1) − P (A1(x, 1m, EG1(1n)(1m)) = 1) > −2−n

> − 1
32

n−2c.

– In the remaining case (event C3), independently of the fact if the estimator
calculated in the first step of A1 returns the correct result or not, one finds

P (A1(x, 1m, EG1(1n)(x)) = 1) − P (A1(x, 1m, EG1(1n)(1m)) = 1)

≥ −1
8
n−2c.

Let H(z, t) denote the event that A1 yields 1 on input (z, EG1(1n)(t)). We
find

P (H(Zn, Xn)) − P (H(Zn, 1m))

≥
∑

x∈IBm

P (Xn = x) · (P (H(x1m, x)) − P (H(x1m, 1m)))

10 Semantic Security 131

≥ P (C1)(
3
8
n−c − 1

32
n−2c) − P (C2)

1
32

n−2c − P (C3)
1
8
n−2c

>
1
2
n−c 3

8
n−c − 1

32
n−2c − 1

8
n−2c

=
1
32

n−2c.

So A1 distinguished encryptions of the ”halves” (i.e., Xn and 1m) of the
polynomial-time random variable Zn.�

Proposition 10.2. Let the cryptosystem (G, E, D) be semantically secure
as in Definition 10.3. Furthermore, suppose that f is polynomial-time com-
putable, quantifiers are reversed in the sense that instead of the scheme

∀A∃A′∀{Xn}∀h∀f

(”strongest” possible order) we have the ”weakest” possible order

∀A∀{Xn}∀h∀f∃A′,

and that the conditional distribution of f−1(Xn) given h(Xn) is a symmet-
ric Bernoulli one. Then (G, E, D) satisfies the property of indistinguishable
encryption.

Proof: The proof is of a similar nature to that of Proposition 10.1. Assume
(G, E, D) has distinguishable encryptions and assume that there exists a
polynomial-time random variable {Tn}n≥1 = {XnYnZn}n≥1, a probabilistic
polynomial-time algorithm A and a positive constant c such that for infinitely
many n, it holds that

|P (A(Zn, EG1(1n)(Xn)) = 1) − P (A(Zn, EG1(1n)(Yn)) = 1)| > n−c. (10.5)

We may assume |Xn| = |Zn| = n. Let {Qn}n≥1 be a (polynomial-time)
random variable that takes the two possible values 0nZnXnYn and 1nZnXnYn

both with probability one half. Let f : IB4n → IB be the function that
returns the first bit of every bitstring of length 4n. On the other hand, define
h : IB4n → IB3n as the function omitting the first n-block of its argument
and, if this block was 1n, interchanges the order of the other two last n-blocks
of the argument. By this definition, the random variables h(Qn) = ZnXnYn

and f(Qn) are independent. Also, f and h are computable in polynomial time
and do not depend on A. Let us now construct a probabilistic polynomial-
time algorithm A2 guessing f(Qn) from h(Qn) and EG1(1n)(Qn). Let δ be
of the form 0nwxv or 1nwvx. Again, A2 will consist of effecting 2 steps on
input h(δ) = wxv and Ee(δ).

– Ignoring Ee(δ), algorithm A2 samples polynomially many times and cal-
culates the difference estimator

132 10 Semantic Security

Δ(w, x, v) := P (A(w, EG1(1n)(x)) = 1) − P (A(w, EG1(1n)(v)) = 1) (10.6)

such that this estimator differs from the true value by less than 1
8n−2c with

probability at least 1 − 2−n say.
– W.l.o.g. we assume that the estimator calculated in (10.6) is positive. Then

the algorithm A2 gives the fourth n-block of Ee(δ) together with w as input
to algorithm A und outputs 1 if A outputs 1 and 0 else.

It remains to do the performance analysis of A2. Let Hn be the event that
A2 successfully guesses f(Qn) given EG1(1n)(Qn) and h(Qn). Furthermore,
Ln denotes the event that the estimator (10.6) has the correct sign. Then we
obtain

P (Hn|Ln, h(Qn) = wxv)
= P (f(Qn) = 1)P (Hn|Ln, h(Qn) = wxv, f(Qn) = 1)

+P (f(Qn) = 0)P (Hn|Ln, h(Qn) = wxv, f(Qn) = 0)

=
1
2
P (A(w, EG1(1n)(x)) = 1) +

1
2
P (A(w, EG1(1n)(v)) = 0)

=
1
2

+
Δ(w, x, v)

2
.

W.l.o.g. we may assume that Δ(w, x, v) ≥ 0. Now we split the situation into
3 possible cases:

– If Δ(w, x, v) ≥ n−c (denote this event by K1), then with probability say
1 − 2−n the estimator has the correct sign. So

P (Hn|h(Qn) = wxv) ≥ P (estimator correct)(
1
2

+
1
2
n−c)

>
1
2

+
1
2
n−c − 2−n

>
1
2

+
1
4
n−c.

– If 1
4n−2c ≤ Δ(w, x, v) < n−c (this event will be called K2), then here also

with probability say 1 − 2−n, the sign of the estimator is the correct one
and one calculates

P (Hn|h(Qn) = wxv) ≥ P (estimator correct)(
1
2

+
1
8
n−2c)

>
1
2
.

– If the remaining event (which will be called K3) holds (i.e., if Δ(w, x, v) <
1
4n−2c), then

P (Hn|h(Qn) = wxv) ≥ 1
2
− 1

8
n−2c.

10 Semantic Security 133

Putting the three cases together, we thus obtain

P (Hn) =
3∑

j=1

P (Kj)P (Hn|Kj)

≥ n−c(
1
2

+
1
4
n−c) + (1 − n−c)(

1
2
− 1

8
n−2c)

>
1
2

+
1
8
n−2c.

This means that the probability of success of the algorithm is significantly
greater than 1

2 , which is a contradiction. �

11 *Algorithmic Complexity

In this chapter, we present a ”non-classical” definition of randomness that is
of a quite different nature from the other criteria in the previous chapters.
Namely, loosely speaking, a bitstring can be called ”random”, if the shortest
program (in the sense of a Turing machine) for describing the string is the
string itself. The length of this shortest program can be viewed as some
sort of ”algorithmic complexity” measure, which itself is of rather theoretical
value, but one can show that it is indeed in ”most” cases closely related
to the linear complexity. So somewhat surprisingly, for ”most” cases (in a
measure-theoretic sense to be specified), the linear complexity seems to be
a ”universal” randomness criterion! (However, this definition does not apply
to individual sequences!)

Definition 11.1. The Turing-Kolmogorov-Chaitin complexity (TKC com-
plexity for short) χ(x) of a bitstring x ∈ IBn of length n is the length of
the shortest program for a universal Turing machine U that makes U simu-
late a Turing machine generating x.

Unfortunately, we have

Proposition 11.1. In general, the function χ is not computable.

(Note that by the famous Church Thesis, computability by a Turing machine
has turned out to be equivalent to all ”reasonable” computability notions,
e.g., to be a primitive recursive function.)
Proof of Proposition 11.1: Assume the contrary and let K > 0 be any
constant and TK a Turing machine that generates and inspects bitsequences
in lexicographical order until a sequence x with χ(x) > K appears and then
accepts this x. Denote by μ(TK) the length of the program for U that makes
U simulate TK . Then we have

μ(TK) = O(log K),

but on the other hand
μ(TK) < K.

So if K is chosen large enough, this yields a contradiction. �

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 135-138, 2004.
© Springer-Verlag Berlin Heidelberg 2004

136 11 *Algorithmic Complexity

However, one can estimate the average behavior of χ:

Proposition 11.2. For 1 ≤ k ≤ n we have

|{x ∈ IBn : χ(x) ≤ k}| ≤ 2k+1.

Proof: This follows from the fact that among the 2k+1 Turing machines T
with μ(T) ≤ k there are at most 2k+1 sequence generators. �

As a consequence, we obtain that ”practically all sequences of moderately
large length” have a TKC complexity close to the length of the sequence. In
other words, a ”truly random sequence has no shorter description than just
the sequence itself”.

Corollary 11.1. If one assumes that the sequences x are uniformly dis-
tributed on IBn, then

P (χ(x) > (1 − ε)n) > 1 − 2−εn+1 (ε > 0).

Next we show that the TKC complexity χ(x) and the linear complexity L(x)
are asymptotically the same for ”practically all” sequences x ∈ IBn (as n →
∞).

Theorem 11.1. Let ω be the Haar measure (uniform probability distribution)
on IBIN . Then

χ(x(n))
L(x(n))

ω−a.s.→ 1 (n → ∞).

(As usual, ”a.s.” means ”almost surely”, i.e. ”ω(. . .) = 1”.)
The proof needs a sequence of several lemmas.

Lemma 11.1. For t, u ∈]0, n[we have

|{x ∈ IBn : n + t < L(x)}| ≤ 1
3
2n−t+1 − 1

3
, (11.1)

|{x ∈ IBn : χ(x) < n − u}| ≤ 2n−u+1, (11.2)

|{x ∈ IBn : L(x) ≤ n + t, n − u ≤ χ(x)}| ≥ 2n − 1
3
2n−t+1 − 2n−u+1. (11.3)

Proof: Inequality (11.2) and the conclusion (11.1),(11.2)=⇒(11.3) are trivial.
So it suffices to verify (11.1). By Corollary 7.1 we have indeed

|{x ∈ IBn : n + t < L(x)}|
≤

∑
n+t<2i≤2n

22n−2i

=
∑

2�n+t
2
+2≤2i≤2n

22n−2i

11 *Algorithmic Complexity 137

= 22n−2�n+t
2
−2

∑
0≤i≤n−�n+t

2
−1

2−2i

= 22n−2�n+t
2
−2 1 − 2−2(n−�n+t

2
)

3/4

=
1
3
22n−2�n+t

2
 − 1
3

≤ 1
3
2n−t+1 − 1

3
.�

Lemma 11.2.

|{x ∈ IBn : 0 ≤ L(x) < n − t}| ≤ 1
3
2n−t+1 +

1
3
, (11.4)

Proof:

|{x ∈ IBn : 0 ≤ L(x) < n − t}|
≤ 1 +

∑
1≤2i<n−t

22i−1

≤ 1 +
∑

2≤2i<2�n−t
2
−2

22i−1

= 1 + 2
∑

0≤i≤�n−t
2
−2

22i

= 1 + 2
2(�n−t

2
−1) − 1
3

≤ 1
3
2n−t+1 +

1
3
.�

Proposition 11.3. For all ε ∈]0, 1[we have (under the uniform distribution
of x on IBn)

P ((1 − ε)L(x) ≤ χ(x)) ≥ 1 − 8
3
2−

ε
2−ε n, (11.5)

P ((1 − ε)χ(x) ≤ L(x)) ≥ 1 − 1
3
2−εn+(1−ε)(1+log n)+1 − 1

3
2−n. (11.6)

Proof: Put t := ε
2−εn, so that (1 − ε)(n + t) = n − t. Now with the aid of

Lemma 11.1 we get

P ((1 − ε)L(x) ≤ χ(x))
≥ P (L(x) ≤ n + t, (1 − ε)(n + t) ≤ χ(x))
= P (L(x) ≤ n + t, n − t ≤ χ(x))

≥ 1 − 1
3
2−t+1 − 2−t+1

= 1 − 8
3
2−εn/(2−ε),

138 11 *Algorithmic Complexity

which proves (11.5). For (11.6), put

t := εn − (1 − ε)�log n�,

so that
(1 − ε)(n + �log n�) = n − t.

Now from Lemma 11.2

P ((1 − ε)χ(x) ≤ L(x))
≥ P (χ(x) ≤ n + �log n�, (1 − ε)(n + �log n�) ≤ L(x))
= P (n − t ≤ L(x))

≥ 1 − 1
3
2−εn+(1−ε)(1+log n)+1 − 1

3
2−n.�

Corollary 11.2. For ε ∈]0, 1[, we have (under the uniform distribution of x
on IBn+1)

P ((1 − ε)L(x(n)) ≤ χ(x(n)) ≤ (1 + ε)L(x(n)) → 1 (n → ∞).

Proof of Theorem 11.1: For x = (x0, x1, . . .) ∈ IBIN (m ≤ n), denote

x(m,n) := (xm, xm+1, . . . , xn).

Define, for k ∈ IN0 and ε ∈]0, 1[, the (independent) events

Ak,ε := {x ∈ IBIN : (1 − ε)L(x(2k−1,2k−1)) ≤ χ(x(2k−1,2k−1))

≤ (1 + ε)L(x(2k−1,2k−1))}.

Then Corollary 11.2 yields

∞∑
k=1

ω(Ak,ε) = ∞

and the assertion follows from the Borel-Cantelli Lemma. �

12 Birthday Paradox and Meet-in-the-Middle

Attack

12.1 The Classical Birthday Attack

In this chapter, we will discuss the aspect of integrity, i.e., the danger that
Eve could change the message sent by Alice so that Bob does not notice that
the message he receives is now fraudulent.
The following so-called ”birthday paradox” is well-known in probability the-
ory: Suppose there are 23 persons in a group. Then the probability that there
exist two persons whose birthdays coincide is more than 1/2. More generally,
consider a group of k persons and let n be the number of possible ”birthdays”
(so in the above example k = 23 and n = 365). Let qn,k be the probability
that there exist no two persons with the same ”birthday”. One calculates

qn,k = n−k
k−1∏
i=0

(n − i)

=
k−1∏
i=1

(1 − i

n
)

≤
k−1∏
i=1

e−i/n

= e−k(k−1)/(2n).

So if
k ≥ (1 +

√
1 + 8n log 2)/2, (12.1)

we have qn,k ≤ 1/2.
Now we will introduce the notion of a so-called hash function. A hash func-
tion h is a function that maps bitstrings of arbitrary (but finite) length to
bitstrings of some fixed maximal length n. We will assume that for every
bitstring x, the image h(x) is easy to compute, but that it is computationally
infeasible to find, for a given value y, an inverse image x such that y = h(x).
The cryptologic application is that if x is the message that Alice wants to
transfer to Bob, then she in fact sends h(x), which Eve can not invert. How-
ever, since x can be arbitrarily long, but h(x) has maximal length n, there
must be collisions, i.e. bitstrings x, x′ such that x �= x′, but h(x) = h(x′). The

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 139-144, 2004.
© Springer-Verlag Berlin Heidelberg 2004

140 12 Birthday Paradox and Meet-in-the-Middle Attack

hash function h is called strongly collision resistant if it is ”infeasible” to find
two different colliding bitstrings x, x′ such that h(x) = h(x′). The so-called
birthday attack is the attack to find such x, x′ with not too small probability.
By the preceding discussion, if one chooses, e.g., k ≥ (1 +

√
1 + 8n log 2)/2

bitstrings x(i) (1 ≤ i ≤ k) and calculates their values h(x(i)), then with
probability more than 1/2 there are two different x(i1), x(i2) such that

h(x(i1)) = h(x(i2)).

12.2 The Generalized Birthday Problem and Its Limit
Distribution

In the following, we will consider the following variant of the birthday prob-
lem, which will be the key of the so-called meet-in-the-middle attack, that we
will present in the next section. Consider a set E of n elements and draw two
samples Er and Es of sizes r, resp. s, (with replacements) from it. What is
the probability P (n, r, s, i) that exactly i elements belong to both samples?
Define

Q(n, r, k) := P (|Er| = r − k)

(the probability of k coincidences in one sample (with replacements) of size
r) and

H(n, r − k, s − �, i) := P (|Er ∩ Es| = i | |Er| = r − k, |Es| = s − �)

(this is the probability that the intersection of the two samples of size r − k,
resp. s−�, drawn without replacements contains i elements). Then we obtain

P (n, r, s, i) = P (

r−i⋃
k=0

s−i⋃
�=0

{|Er| = r − k, |Es| = s − �, |Er ∩ Es| = i})

=

r−i∑
k=0

s−i∑
�=0

P (|Er ∩ Es| = i, |Er| = r − k||Es| = s − �)P (|Er| = r − k, |Es| = s − �)

=

r−i∑
k=0

s−i∑
�=0

Q(n, r, k)H(n, r − k, s − �, i)Q(n, s, �). (12.2)

Standard combinatorial reasoning yields that H(. . .) is given by the hyper-
geometric distribution:

H(n, r, s, i) =
(

r

i

)(
n − r

s − i

)
/

(
n

s

)
. (12.3)

Now let us evaluate Q(n, r, c). Clearly

Q(n, r, c) = 0 (r ≥ n, c < r − n). (12.4)

12.2 The Generalized Birthday Problem and Its Limit Distribution 141

In the other cases, observe that the c coincidences are drawn from a set of
r − c elements, which is equivalent to choosing from the r drawings α1 ones
to yield the first element, α2 ones to yield the second element, etc., until one
has chosen all r − c elements. If we define

R := {α := (α1, α2, . . . , αr−c) : αj ∈ {1, 2, . . . , c + 1},
r−c∑
j=1

αj = r},

then the number of ways each vector in R can be ordered is given by the
multinomial coefficient

(
r
α

)
. Hence

Q(n, r, c) =

(
n

r−c

)
nr

∑
α∈R

(
r

α

)
. (12.5)

Let us now determine the limit of P (n, r, s, i) (for n, r, s → ∞ under suitable
common behavior of n, r, and s). It turns out that it is given by a Poisson
distribution as follows:
Theorem 12.1.

P (n, r, s, i) → e−ν νi

i!
(n, r, s → ∞,

r2

2n
→ λ,

s2

2n
→ μ,

rs

n
→ ν).

For the proof, we will separately (in the form of lemmas and corollaries) con-
sider the asymptotic behavior of H(. . .) and Q(. . .). Then relation (12.2) will
yield the result. The following limit theorem for the hypergeometric distri-
bution is well known and easy to prove:
Lemma 12.1.

H(n, r, s, i) → e−ν νi

i!
(n, r, s → ∞,

rs

n
→ ν).

Lemma 12.2.

Q(n, r, c) → e−λ λc

c!
(n, r → ∞,

r2

2n
→ λ).

Proof: If α ∈ R with k components �= 1 (evidently k ≤ c), the summand(
r
α

)
in the sum (12.5) occurs exactly

(
r−c

k

)
times, hence, if we define Rk as

the set of all non-decreasing sequences α = (α1, α2, . . . , αk) of length k with
elements in {2, 3 . . . , c + 1} such that

∑k
j=1 αj = c + k, we can write

Q(n, r, c) =

(
n

r−c

)
nr

c∑
k=1

(r − c)!
k!(r − c − k)!

∑
α∈Rk

(
r

α

)

∼
(

n
r−c

)
nr

(r − c)!
c∑

k=1

rc+k

k!

∑
α∈Rk

(
k∏

i=1

αi!)−1

=
n!

nr(n − r − c)!
r2c

2cc!
(1 +

γ

r
)

∼ e−r2/(2n)

nc

r2c

2cc!
(1 +

γ

r
),

142 12 Birthday Paradox and Meet-in-the-Middle Attack

with

γ := 2cr1−cc!
c−1∑
j=1

r−j/j!.

So finally we find

Q(n, r, c) ∼ e−r2/(2n)(
r2

2n
)c/c!,

which yields the result. �

For the determination of the limit of P (. . .), we study the behavior of H(. . .)
in some more detail:

Lemma 12.3. For K
N < 1

2 we have the estimations

exp(−K2

2N
+

K

2N
− K3

3N2
) ≤ N !

NK(N − K)!
≤ exp(−K2

2N
+

K

2N
).

This lemma yields the following two inequalities:

Corollary 12.1.

H(n, r, s, i)fi(n, r, s, i, k, �) ≤ H(n, r − k, s − �, i),

where

fi(n, r, s, i, k, �) := g(r, i, k)g(s, i, �)g(n, r, k)g(n, s, �)e
(k+1)2

n−r−s ,

with
g(r, i, k) := e−

k
r − k2

r−i (1 − i

r
)k.

Corollary 12.2.

H(n, r − k, s − �, i) ≤ H(n, r, s, i)f̃s(n, r, s, i, k, �),

where

f̃s(n, r, s, i, k, �) := g̃(n, r, i, k)g̃(n, s, i, �)e
(k+1)2

n−r−s +2(k+1) r+s
n ,

with
g̃(n, r, i, k) := e

k2
r−i + k

r−i + k
n−r .

With these two corollaries, we obtain the limits

Corollary 12.3.

fi(n, r, s, i, k, �), f̃s(n, r, s, i, k, �) → 1 (n, r, s → ∞,
r2

2n
→ λ,

s2

2n
→ μ,

rs

n
→ ν).

12.3 The Meet-in-the-Middle Attack 143

Now we may proceed to the proof of Theorem 12.1. For fixed α, β, we have,
since all occurring terms are positive,

P (n, r, s, i) ≥
α∑

k=0

β∑
�=0

Q(n, r, k)H(n, r − k, s − �, i)Q(n, s, �)

≥ H(n, r, s, i)fi(n, r, s, i, α, β)

·
α∑

k=0

Q(n, r, k)
β∑

�=0

Q(n, s, �). (12.6)

Taking the limit of the first, resp. second, sum in the last member of inequality
(12.6) yields the probability distribution functions of a Poisson distribution
with parameter λ, resp. μ, evaluated at α, resp. β.
On the other hand, since H(n, r − k, s − �, i) ≤ 1 (k ≥ α or � ≥ β) and
H(n, r − k, s − �, i) ≤ H(n, r, s, i) (else), we get

P (n, r, s, i) ≤ H(n, r, s, i)f̃s(n, r, s, i, α, β)
α∑

k=0

β∑
�=0

Q(n, r, k)Q(n, s, �)

+
r−i∑

k=α+1

Q(n, r, k)
β∑

�=0

Q(n, s, �)

+
α∑

k=0

Q(n, r, k)
s−i∑

�=β+1

Q(n, s, �)

+
r−i∑

k=α+1

Q(n, r, k)
s−i∑

�=β+1

Q(n, s, �).

On the right-hand side, again f̃s(n, r, s, i, α, β) ≤ 1, whereas the sums tend
to the corresponding Poisson distribution functions F., resp. to 1 − F., more
precisely:

limP (n, r, s, i) ≤ limH(n, r, s, i)Fλ(α)Fμ(β)
+(1 − Fλ(α))Fμ(β) + Fλ(α)(1 − Fμ(β))
+(1 − Fλ(α))(1 − Fμ(β)). (12.7)

Now letting tend α, β → ∞ yields Theorem 12.1.

12.3 The Meet-in-the-Middle Attack

Here, we consider the so-called Rabin scheme, which is given as follows: Let
the plaintexts x consist of n blocks x(1), x(2), . . . , x(n) ∈ IB56. Similarly, the
ciphertext y will be written as

144 12 Birthday Paradox and Meet-in-the-Middle Attack

y =: (y((1), y(2), . . . , y(n)) ∈ (IB56)n.

Denote by Ek(x) the DES encrypting of the plaintext x with key k and Dk(y)
the DES deciphering of the ciphertext y with key k (for the description of
DES see any general manual on modern cryptology). Then the hash values
h1, h2, . . . , hn are defined as

hj := Ex(j)(hj−1) (1 ≤ j ≤ n),

where h0 is some uniformly distributed random element of IB56. We will write

Ex(h) := Ex(n)(Ex(n−1)(. . . (Ex(1)(h)) . . .)),

Dy(h) := Ey(1)(Ey(2)(. . . (Ey(n)(h)) . . .)).

Now for mounting the so-called meet-in-the-middle attack, Eve first generates
232 messages x[�] and x[r], and calculates their values h�(= Ex[�](h0)) and
hr(= Dx[r](h2nr)) (where nr denotes the number of 56-bit blocks of x[r]). Now
she sorts the lists of all values h�, resp. of all values hr, (recall that sorting
is ”fast” in the sense that sorting a list of n elements requires O(n log n)
operations). If one supposes that E encrypts ”randomly enough”, this can
be considered (before ordering) as two random samples of 232 drawings with
replacements of a total population of 264 elements. So by Theorem 12.1,
during the sorting, a coincidence (i.e., a case where there exist some �0, r0

such that h�0 = hr0) occurs with probability at least about 1− e−1. Now put

x := (x[�0], x[r0]).

Then we get
Ex(h0) = Ex[�0](h�0) = Ex[r0](hr0) = hnr0

.

So h0 and hnr0
are, as one says, ”linked up” (or ”joined up”) by x. Hence

Eve can construct a fraudulent message x′.

13 Quantum Cryptography

In this final short chapter, we will present the fundamental idea of quan-
tum cryptography. This is not the same thing as quantum computing treated
in Chapter 3: There, quantum computers are used to cryptanalyze classical
cryptosystems.
The most fundamental method of quantum cryptography can be demon-
strated by the following example:

– Alice sends Bob a string of photon pulses. She polarizes every photon (ran-
domly) in one of 4 possible directions: horizontal, vertical, left-diagonal, or
right-diagonal, for example,

||/ −−| − /

– Bob is in possession of a polarization detector, which he can set to mea-
sure the rectilinear or diagonal polarization. For this, he can, for example,
use a calcium carbonate crystal. Since in this material electrons are bound
with different strengths in different directions, a photon passing through
the crystal “feels” a different electromagnetic force depending on the ori-
entation of the electric field relative to the polarization axis in the crystal.
Bob can not measure both types of polarization, since in quantum mechan-
ics measuring the one destroys the possibility of measuring the other (see
also Chapter 3 for more details). If he sets his detector to measure recti-
linear polarization and if Alice polarized her photon really as “horizontal”
(−) or “vertical” (|), then Bob will learn how Alice polarized her photon.
The same is true if Alice polarized as “\” or “/” and Bob measures diag-
onal polarization. However, if he sets the detector to measure rectilinear
polarization and if Alice polarized diagonally, Bob will obtain a random
measurement and, what is more, he will not know the difference. So Bob
will set his detector at random, e.g.,

drrdddrdrr

(where “r” means “rectilinear” and “d” stands for “diagonal”). In our
example, he could, for example, obtain the result

/| − / − |

D. Neuenschwander: Prob. and Stat. Methods in Cryptology, LNCS 3028, pp. 145-146, 2004.
© Springer-Verlag Berlin Heidelberg 2004

146 13 Quantum Cryptography

– Bob tells Alice (over an insecure channel) his detector settings.
– Alice tells Bob which settings (rectilinear or diagonal) were correct. Here,

for example, the detector was correctly set for the photon pulses numbers
2, 6, 7, and 9.

– Alice and Bob keep only those polarizations that were correctly measured,
so here

∗| ∗ ∗ ∗ ∗ − ∗
These correctly measured polarizations can be used as a message (or a key)
in the form of a bitstring by a prearranged code.

Since Bob will guess correctly in half of the cases, in order to generate n bits
one has to use about 2n photon pulses. The important feature of quantum
cryptography is that Eve can really not eavesdrop. Like Bob, she has to guess
which type of polarization (rectilinear or diagonal) she has to measure, and
she will be wrong in half of the cases. But then the polarization of the photons
is changed, and Alice and Bob after comparing their bitstrings at the end, will
find discrepancies, which shows them that there has been an attack by Eve.
So they will just not use these bits and create new ones. By doing enough
comparisons, they can get arbitrarily good security against an eavesdropping
by Eve.
For more precise and further information on quantum cryptography, see, for
example, Clearwater, Williams (1998), Chapter 8 or Hungerbühler, Struwe
(2003).

Bibliographical Remarks

Section 1.1 (classical Vigenère Cipher) is taken from Beutelspacher (1993),
whereas the remarks on perfect secrecy in Section 1.2 are based on Buchmann
(2001), 4.4. For the counterexample and Theorem 1.2 on cascade ciphers see
Maurer, Massey (1993).
The RSA system in Chapter 2 can be found in almost every introductory
book on cryptology. Specifically, the treatment of the primality tests in Sec-
tions 2.2 (Soloway-Strassen Test) and 2.3 (Rabin Test) is taken from the
book of Kranakis (1986). The subject of Section 2.4 (bit security, see also the
key word ”hard bits” in the literature) is somewhat more involved and the
details (see Delfs, Knebl (2002), 7) can be omitted at first reading. Section
2.5 is about hardware implementation problems (timing attacks, see Boneh
(1999)). Section 2.6 is a short glimpse into the huge and important subject
of Zero Knowledge, see Schneier (1996), p. 548f.
Chapter 3 is about quantum probability, which behaves quite differently from
classical probability. First, we give a short introduction to quantum comput-
ing (Clearwater, Williams (1998), Gruska (1999)). The preparatory Section
3.3 on continued fractions can be found, e.g., in the classical book of Per-
ron (1954) or in any other introductory text on continued fractions. Shor’s
factorization algorithm (Section 3.4) is described as in Clearwater, Williams
(1998).
The considerations about physical (”genuine”) random-number generators in
Sections 4.1 and 4.2 is an abbreviated version of the article Neuenschwander,
Zeuner (1993). Section 4.3 proves a result of Näslund, Russell (2001) about
the possibility to construct unbiased random bits from several biased ones
with common rational bias by adding them mod.2.
In contrast to Chapter 4, in Chapter 5 we discuss pseudo-random-number
generators as the linear feedback shift registers (LFSR) (especially the ques-
tion in which cases they generate so-called pseudo-noise (PN) sequences (see
van Tilborg (1988)). The so-called shrinking generator has been introduced
by Coppersmith et al. (1994), whereas its variant, the self-shrinking genera-
tor, is due to Meier and Staffelbach (1995) (see also Blackburn (1999) prov-
ing the conjecture about its maximum linear complexity uttered by Meier
and Staffelbach (1995)). For the notion of perfect pseudorandomness in Sec-
tion 5.3, see Schrift, Shamir (1993). Section 5.4 has been taken from Massey

148 13 Quantum Cryptography

(1997), whereas for the correlation immunity in Section 5.5 see mainly Ruep-
pel (1986) and Siegenthaler (1984). The quadratic congruential generator
(Section 5.6) has been analyzed in Brands, Gill (1996) (see also the preceed-
ing article Brands, Gill (1995)).
The information theory primer of Chapter 6 is mainly standard material. For
Section 6.1, we have used the course notes of Carnal (1993). For Section 6.2,
see mainly Massey (1997). Section 6.3 describes a new and relatively non-
standard approach to information theory (marginal guesswork) due to Pliam
(2000).
Chapter 7 mainly treats the tests used to evaluate the AES (”Advanced En-
cryption Standard”), which is the successor of the DES (”Data Encryption
Standard”). For the development of an AES, the National Institute for Stan-
dards and Technolgy (NIST) invited the worldwide community of cryptolo-
gists to a competition, which was finally won by Daemen and Rijmen with
their algorithm RIJNDAEL (see Daemen, Rijmen (2002), see also Zürcher
(2003)). For the tests themselves we refer, e.g., to Rukhin et al. (2000). The
origin and certain details about the tests suggested by Rukhin can be found
in the references cited in the main text. Section 7.1 is based mainly on the
”Handbook of Cryptology” of the Swiss Army (1981). Proposition 7.1 can be
found in Baron, Rukhin (1999). The ”Approximate Entropy Test” in Section
7.7 has also been described by Rukhin (2000a,b). Proofs of the Berlekamp-
Massey Algorithm (Section 7.11) can be found in many texts. Our treatment
is that of the above-cited Handbook of Cryptology of the Swiss Army (1981),
A.4. The statistics of the linear complexity has been given in Rueppel (1986)
and Rukhin (2000b).
Chapter 8 is about the distribution of keys in the Diffie-Hellman system
(Massey, Waldvogel (1993) and the literature cited therein). The Prime Num-
ber Theorem cited at the end of Chapter 8 can be found in any primer about
analytic number theory.
Differential cryptanalysis, which is the subject of Chapter 9, and moreover its
counterpart ”linear cryptanalysis” (attributed to Matsui (1994)) has become
very popular in recent years. The question to whom to attribute it is difficult,
some first steps were probably made in Great Britain already several decades
ago, but the developers were not allowed to publish it. Good explanations
about different aspects can be found in Massey (1997), on which also our
treatment is mainly based. Section 9.2 adresses the question of the distri-
bution of characteristics as has been described in Neuenschwander (2002),
a generalization of certain of O’Connor’s (1995) results for bitstrings to se-
quences of elements of an arbitrary residue ring. Closely related is also the
paper Hawkes, O’Connor (1999).
Chapter 10 is about the notion of semantic security (Goldreich (1993)).
The algorithmic complexity (or Turing-Kolmogorov-Chaitin complexity) dis-
cussed in Chapter 11 is of rather theoretical interest (see Beth, Dai (1990)).
Chapter 12 addresses consequences of the well-known ”birthday” paradox in

13 Quantum Cryptography 149

probability theory for cryptology (especially hash functions). In many cryp-
tology texts, one can find the keyword ”birthday attack”. In particular, Sec-
tions 12.2 and 12.3 are based on Campana et al. (1988).
Finally, Chapter 13 is an informal standard short introduction to quantum
cryptography. A more sophisticated treatment of it can, e.g., be found in
Clearwater, Williams (1998). See also Hungerbühler, Struwe (2003).

References

1. Agrawal, M., Kayal, N, Saxena, N.1 (2003). PRIMES is in P.
Manuscript Department of Computer Science and Engineering, In-
dian Institute of Technology Kanpur. Available on the Internet under
www.cse.iitk.ac.in/news/primality.html.

2. Aldous, D., Shields, P. (1988). A Diffusion Limit for a Class of Randomly Grow-
ing Binary Trees. Prob. Theory Rel. Fields 79, 509-542.

3. Banks, D., Dray, J., Leigh, S., Levenson, M., Nechvatal, J., Rukhin, A. L., Smid,
M., Soto, J., Vangel, M., Vo, S. (2000). A Statistical Test Suite for the Validation
of Cryptographic Random Number Generators. Special NIST Publication, NIST,
Gaithersburg MD.

4. Barbour, A. D., Holst, L., Janson, S. (1992). Poisson Approximation. Clarendon
Press, Oxford.

5. Baron, M., Rukhin, A. L. (1999). Distribution of the Number of Visits of a
Random Walk. Comm. Statist. - Stochastic Models 15(3), 593-597.

6. Barton, D. E., David, F. N. (1962). Combinatorial Chance. Hafner, New York.
7. Bernstein, D. (2002). An Exposition of the Agrawal-Kayal-Saxena

Primality-Proving Theorem. Manuscript. Available on the Internet under
cr.yp.to/papers.html
aks.

8. Beth, T., Dai, Z.-D. (1990). On the Complexity of Pseudo-Random Sequences -
or: If You Can Describe a Sequence It Can’t Be Random. In: Quisquater, J.-J.,
Vandwalle, J. (ed.). Adv. Crypt. EUROCRYPT ’89. Lecture Notes in Computer
Science 434. Springer, Berlin, 533-543.

9. Beutelspacher, A. (1993). Kryptologie. 3. Auflage. Vieweg, Braunschweig.
10. Biham, E., Shamir, A. (1991). Differential Cryptanalysis of DES-like Cryp-

tosystems. J. Cryptology 4(1),3-72.
11. Billingsley, P. (1956). Asymptotic Distributions of Two Goodness of Fit Crite-

ria. Ann. Math. Statist. 27, 1123-1129.
12. Blackburn, S. R. (1999). The Linear Complexity of the Self-Shrinking Genera-

tor. IEEE Trans. Inf. Theory 45(6), 2073-2076.
13. Blum, M., Micali, S. (1984). How to Generate Cryptographically Strong Se-

quences of Pseudo-Random Bits. SIAM J. Computing 13(4), 850-864.
14. Boneh, D. (1999). Twenty Years of Attacks on the RSA Cryptosystem. Notices

Am. Math. Soc. 46(2), 203-213.
15. Boneh, D., Venkatesan, R. (1998). Breaking RSA May Not Be Equivalent to

Factoring. In: Nyberg, K. (ed.). Adv. Crypt. EUROCRYPT’98. Lecture Notes in
Computer Science 1403. Springer, Berlin, 59-71.

1 In this bibliography, for co-authored literature, we always put the names of the
authors in alphabetic order.

152 References

16. de Bonis, A., de Santis, A (2001). New Results on the Randomness of Visual
Cryptography Schemes. In: Lam, K.-Y. et al. (ed.). Cryptography and Compu-
tational Number Theory. Prog. Comput. Sci. Appl. Log. 20, Birkhäuser, Basel,
187-201.

17. Bornemann, F. (2002). Primes in P: Ein Durchbruch für ”Jedermann”. DMV
Mittelungen 4-2002, 14-21.

18. Brands, S, Gill, R. (1995). Cryptography, Statistics, and Psudorandomness I.
Prob. Math. Stat. 15, 101-114.

19. Brands, S, Gill, R. (1996). Cryptography, Statistics, and Psudorandomness II.
Prob. Math. Stat. 16(1), 1-17.

20. Brynielsson, L. (1989). A Short Proof of the Xiao-Massey Lemma. IEEE Trans.
Inf. Theory 35(6), 1344.

21. Buchmann, J. A. (2001). Introduction to Cryptography. Springer, Berlin.
22. Campana, M., Cohen, R., Girault, M. (1988). A Generalized Birthday Attack.

In: Günther, C. G. (ed.). Adv. Crypt. EUROCRYPT’88. Lecture Notes in Com-
puter Science 330. Springer, Berlin, 129-156.

23. Canetti, R., Friedlander, J., Shparlinski, I. (1999). On certain Exponential Sums
and the Distribution of Diffie-Hellman Triples. J. London Math. Soc. (2) 59, 799-
812.

24. Carnal, H. (1993). Informationstheorie. Course Notes, University of Bern (CH).
25. Chepyzhov, V., Smeets, B. (1991). On a Fast Correlation Attack on certain

Stream Ciphers. In: Davies, D. W. (ed.). EUROCRYPT’91. Lecture Notes in
Computer Science 547. Springer, Berlin, 176-185.

26. Clearwater, S. H., Williams, C. P. (1998). Explorations in Quantum Computing.
Springer, Berlin.

27. Coppersmith, D., Krawczyk, H., Mansour, Y. (1994). The Shrinking Generator.
In: Stinson, D. R. (ed.). Adv. Crypt. CRYPTO’93. Lecture Notes in Computer
Science 773. Springer, Berlin, 22-39.

28. Coron, J. S., Naccache, D. (1999). An Accurate Evalutation of Maurer’s Univer-
sal Test. In: Selected Areas in Cryptography. Lecture Notes in Computer Science
1556. Springer, Berlin, 57-71.

29. Daemen, J., Rijmen, V. (2002). The Design of Rijndael. AES - the Advanced
Encryption Standard. Springer, Berlin.

30. Darmg̊ard, I. B., Landrock, P., Pomerance, C. (1993). Average Case Error
Estimates for the Strong Probable Prime Test. Math. of Computation 61(203),
177-194.

31. Delfs, H., Knebl, H. (2002). Introduction to Cryptography. Springer, Berlin.
32. Diffie, W., Hellman, M. (1976). New Directions in Cryptography. IEEE Trans.

Inf. Theory IT 22, 644-654.
33. Feller, W. (1968). An Introduction to Probability Theory and its Applications.

3rd edn. Wiley, New York.
34. Goldreich, O. (1993). A Uniform-Complexity Treatment of Encryption and

Zero-Knowledge. J. Cryptology 6(1), 21-53.
35. Gonzales Vasco, M. I., Shparlinski, I. E. (2001)- On the Security of Diffie-

Hellman Bits. In: Lam, K.-Y. et al. (ed.). Cryptography and Computational Num-
ber Theory. Prog. Comput. Sci. Appl. Log. 20, Birkhäuser, Basel, 257-268.

36. Good, I. J. (1953). The Serial Test for Sampling Numbers and Other Tests for
Randomness. Proc. Cam. Phil. Soc. 49, 276-284.

37. Good, I. J. (1957). On the Serial Test for Random Sequence. Ann. Math. Statist.
23, 262-264.

References 153

38. Gruska, J. (1999). Quantum Computing. McGraw-Hill, London.
39. Guibas, L. J., Odlyzko, A. M. (1981). String Overlaps, Pattern Matching, and

Nontransitive Games. J. Combin. Theory A, 30, 183-208.
40. Hardy, G. H., Wright, E. M. (1960). An Introduction to the Theory of Numbers,

4th edn. Oxford University Press.
41. Hawkes, P., O’Connor, L. (1999). XOR and non-XOR Differential Probabilities.

In: Stern, J. (ed.). Adv. Crypt. EUROCRYPT’99. Lecture Notes in Computer
Science 1592. Springer, Berlin, 272-285.

42. Hungerbühler, N., Struwe, M. (2003). A One-way Function from Thermody-
namics and Applications to Cryptography. Elem. Math. 58, 49-64.

43. Inoue, H., Kumahora, H., Yoshizawa, Y., Ichimura, M., Miyatake, O. (1983).
Random Numbers Generated by a Physical Device. Appl. Statist. . 32(2), 115-
120.

44. Kalouptsidis, N., Kolokotronis, N. (2003). On the Linear Complexity of Non-
linearly Filtered PN-sequences. IEEE Trans. Inf. Theory 49(11), 3047-3059.

45. Kirschenhofer, P., Prodinger, H., Szpankowski, W. (1994). Digital Search Trees
Again Revisited: The Internal Path Length Perspective. SIAM J. Computation
23, 598-616.

46. Koblitz, N. (1999). Algebraic Aspects of Cryptography. Springer, Berlin.
47. Kovalenko, I. N. (1972). Distribution of the Linear Rank of a Random Matrix.

Theory Prob. Appl. 17, 342-346.
48. Kranakis, E. (1986). Primality and Cryptography. Wiley, New York.
49. Lidl, R., Niederreiter, H. (1986). Introduction to Finite Fields and their Appli-

cations. Cambridge University Press, Cambridge.
50. Marsaglia, G. (1968). Random Numbers Fall Mainly in the Plane. Proc. Nat.

Acad. Sci. 61, 25-28.
51. Massey, J. L. (1997). Cryptography: Fundamentals and Applications. Advanced

Technology Seminars, Zürich.
52. Massey, J. L., Maurer, U. M. (1993). Cascade Ciphers: The Importance of Being

First. J. Cryptology 6(1), 55-61.
53. Massey, J. L., Waldvogel, C. P. (1993). The Probability Distribution of the

Diffie-Hellman Key. In: Seberry, J. (ed.). Adv. Crypt. AUSCRYPT’92. Lecture
Notes in Computer Science 718. Springer, Berlin, 492-504.

54. Matsui, M. (1994). Linear Cryptanalysis Method for DES Cipher. In: Helleseth,
T. (ed.). Adv. Crypt. EUROCRYPT’93. Lecture Notes in Computer Science 765.
Springer, Berlin, 386-397.

55. Maurer, U. M. (1992). A Universal Statistical Test for Random Bit Generators.
J. Cryptology 5, 89-105.

56. Meier, W. ,Staffelbach, O. (1989). Fast Correlation Attacks on certain Stream
Ciphers. J. Cryptology 1(3), 159-176.

57. Meier, W., Staffelbach, O. (1991). Correlation Properties of Combiners with
Memory in Stream Ciphers. In: Damgard, I. B. (ed.). Adv. Crypt. EU-
ROCR¿PT’90. Lecture Notes in Computer Scinece 473. Springer, Berlin, 204-213.

58. Meier, W., Staffelbach, O. (1992). Correlation Properties of Combiners with
Memory in Stream Ciphers. J. Cryptology 5(1), 67-86.

59. Meier, W., Staffelbach, O. (1995). The Self-Shrinking Generator. In: De Santis,
A. (ed.). Adv. Crypt. EUROCRYPT ’94. Lecture Notes in Computer Science 950,
Springer, Berlin, 205-214.

60. Mitra, S. K., Rao, C. R. (1971). Generalized Inverse of Matrices and Its Appli-
cations. Wiley, New York.

154 References

61. Müller, S. (2003). A Probable Prime Test with very high Confidence for n ≡ 3
mod. 4, J. Cryptology 16(2), 117-139.

62. Näslund, M., Russell, A. (2001). Achieving Optimal Fairness from Biased Coin-
flips. In: Lam, K.-Y. et al. (ed.). Cryptography and Computational Number The-
ory. Birkhäuser, Basel, 303-330.

63. Neuenschwander, D. (2002). A Limit Theorem in Cryptology: The Asymptotic
Distribution of Additive Characteristics of Random Permutations of (ZZ/qZZ). In:
Berkes, I. et al. (ed.). Limit Theofems in Probability and Statistics II. Proceedings
of the 1999 Balatonlelle Conference. Budapest, 437-442.

64. Neuenschwander, D., Zeuner, H. M. (2003). Generating Random Numbers of
Prescribed Distribution Using Physical Sources. Stat. and Comp. 13(1), 5-11.

65. von Neumann, J. (1963). Various Techniques Used in Connection with Random
Digits. In: von Neumann’s Collected Works Vol. 5. Pegamont Press, Elmsford NY,
768-770.

66. Nisley, E. (1990). Basic Radioactive Randoms. Circuit Cellar Ink, 58-68.
67. O’Connor, L. (1995). On the Distribution of Characteristics in Bijective Map-

pings. J. Crpytology 8, 67-86.
68. Odlyzko, A. M. (2001). The 1022-nd Zero of the Riemann Zeta Function. In:

Lapidus, M. L. et al. (ed.). Dynamical, spectral, and arithmetic zeta functions.
Contemp. Math. 290, 139-144.

69. Okeya, K., Sakurai, K. (2000). Power Analysis Breaks Elliptic Curve Cryptosys-
tems even Secure against the Timing Attack. In: Boy, B., Okamot, E. (ed.). Progr.
Crypt. INDOCRYPT 2000. Lecture Notes in Computer Science 1977. Springer,
Berlin,178-190.

70. Perron, O. (1954). Die Lehre von den Kettenbrüchen. Teubner, Stuttgart.
71. Pliam, J. O. (2000). On the Incomparability of Entropy and Marginal Guess-

work in Brute-Force Attacks. In: Boy, B., Okamot, E. (ed.). Progr. Crypt. IN-
DOCRYPT 2000. Lecture Notes in Computer Science 1977. Springer, Berlin,
67-79.

72. Reeds, J. A., Sloane, N. J. A. (1985). Shift-register Synthesis (modulo m).
SIAM J. Comput. 14(3), 505-513.

73. Révész. P. (1990). Random Walk in Random and Non-Random Environments.
World Scientific, Singapore.

74. Richter, M. (1993). PURAN 2: Ein Zufallsgenerator zur Erzeugung von quasi-
idelaen Zufallszahlen aus elektronischem Rauschen. Informatik aktuell 41, 49-62.

75. Rueppel, R. A. (1986). Analysis and Design of Stream Ciphers. Springer, Berlin.
76. Rukhin, A. L. (2000a). Approximate Entropy for Testing Randomness. J. Appl.

Prob. 37, 88-100.
77. Rukhin, A. L. (2000b). Testing Randomness: A Suite of Statistical Procdures.

Theory Probab. Appl. 45(1), 111-132.
78. Schindler, W. (2000). A Timing Attack Against RSA with the Chinese Re-

mainder Theorem. In: Koc, C. K., Paar, C. (ed.). Cryptographic Hardware and
Embedded Systems. Lecture Notes in Computer Science 1965. Springer, Berlin,
109-124.

79. Schindler, W. (2002a). Optimized Timing Attacks Against Public Key Cryp-
tosystems. Statistics and Decisions 20, 191-210.

80. Schindler, W. (2002b). A Combined Timing and Power Attack. In: Paillier, P.,
Naccache, D. (ed.). Public Key Cryptography 2002. Lecture Notes in Computer
Science 2274. Springer, Berlin, 263-279.

References 155

81. Schindler, W., Walter, C. (2003). More Detail for a Combined Timing and
Power Attack against Implementations of RSA. In: Paterson, K. G. (ed.). Cryp-
tography and Coding - IMA 2003. Lecture Notes in Computer Science 2898.
Springer, Berlin, 245-263.

82. Schneier, B. (1996). Applied Cryptography. Wiley, New York.
83. Schrift, A. W., Shamir, A. (1993). Universal Tests for Nonuniform Distribu-

tions. J. Cryptology 6, 119-133.
84. Seifert, J.-P. (2001). Using Fewer Qubits in Shor’s Factorization Algorithm

Via Simultaneous Diophantine Approximation. In: Naccache, D. (ed.). Topics in
Cryptology. CT-RSA 2001. Lecture Notes in Computer Science 2020. Springer,
Berlin, 319-327.

85. Siegenthaler, T. (1984). Correlation Immunity of Nonlinear Combining Func-
tions for Cryptographic Applications. IEEE Trans. Inf. Theory IT-30(5), 776-
780.

86. Swiss Army (1981). Kryptologen-Handbuch. Bern.
87. van Tilborg, H. C. A. (1988). An Introduction to Cryptology. Kluwer, Boston.
88. Walker, H. (1996). HotBits: Genuine Random Numbers Generated by Radioac-

tive Decay. Fourmilab, http://www.fourmilab.ch/hotbits.
89. Walther, U. (1999). Verschlüsselungssysteme auf Basis endlicher Geometrien.

Ph. D. Thesis University of Giessen. Mittelungen aus dem Math. Seminar Giessen,
Heft 236, Selbstverlag des Math. Instituts.

90. Williams, H. C. (1980). A Modification of the RSA Public-Key Encryption
Procedure. IEEE Trans. Inf. Theory 26, 726-729.

91. Zürcher, M. (2003). Security of the Advanced Encryption Standard. Diploma
Thesis University of Bern (CH).

Index

νm(t), 19
φ-entropy, 97
φ-uncertainty, 97
indexp,g(x), 19

AES, 89
algebraic normal form, 71
algorithmic (Turing-Kolmogorov-

Chaitin) complexity, 135
approximate φ-entropy, 98
approximating fraction, 40
asymptotic equidistribution property,

86
autocorrelation, 58
autocorrelation matrix, 96
autocorrelation polynomial, 95

Berlekamp-Massey algorithm, 102
birthday paradox, 139
blinding, 34
Blum integer, 72
Blum-Micali generator, 67
Borel-Cantelli lemma, 138
bra vector, 38
Brent-Kung algorithm, 75

characteristic, 115
characteristic polynomial of a LFSR, 59
Chinese remainder theorem, 21
Church thesis, 135
coding theorem, 79
coin-flipping protocol, 34
comparative next bit test, 66
conditional entropy, 82
confluent hypergeometric function, 94
correlation attack, 69
correlation immunity, 70
correlation polynomial, 95

de Bruijn FSR, 68
de Bruijn sequence, 69
differential, 115
discrete logarithm problem, 18

Einstein-Podolsky-Rosen experiment,
40

electronic signature, 18
ElGamal system, 107
entangled states, 39
entropy, 77
error probability of first kind, 81
error probability of second kind, 81
Euler’s criterion, 19, 73
exponential function modulo n, 43
Extended Riemann Hypothesis, 21

feedback shift register (FSR), 68
Fermat number, 17
Fermat’s little theorem, 18, 43
Friedman test, 11

Geiger counter, 47
generating function, 59
Golomb’s conditions, 58

Hamiltionian, 39
Hamming weight, 54
hard-core predicate (bit), 67
hash function, 139
heat equation, 38
Hot Bits, 47

ideal local statistics, 68
index of coincidence, 11
indistinguishable encryption property,

127
information content, 77

158 Index

irreducibility of a code (Fano condition),
78

Kasiski test, 10
ket vector, 38
Kraft’s inequality, 78

Lagrange’s theorem, 109
Legendre-Jacobi symbol, 19, 73
Legendre-symbol, 19
linear complexity, 62, 101
linear feedback shift register (LFSR),

58

Markov chain, 117
Markov cipher, 116
Massey-Omura system, 107
mot probable, 10
mutual information, 84

nested property of local statistics, 68
non-singular FSR, 68
nonlinear order, 71
number field sieve, 37

observable, 38
one-way permutation, 67

pairing theorem, 119
parity, 75
parity algorithm, 75
Pascal’s ruin problem, 92
passwords in UNIX, 86
perfect secrecy, 12
perfect simulation, 65
period of a polynomial, 60
PN(pseudo-noise)-sequence, 58
Poisson process, 49
polarization detector, 145
Polya-Aeppli distribution, 94
polynomial-time probabilistic algo-

rithm, 27

polynomial-time random variable, 125
primality constant, 24
primality sequence, 22
prime number theorem, 113
primitive polynomial, 60
probabilistic algorithm, 27
probabilistic primality test, 18
probability amplitude, 38
public key system, 17

quadratic sieve, 37
quantum parallelism, 40
quantum teleportation, 40
qubit, 39

Rabin scheme, 143
recursion polynomial, 59
regular continued fraction, 40
relative entropy (information diver-

gence, Kullback-Leibler distance,
discrimination, 80

repeated squaring algorithm, 33

Schrödinger equation, 39
semantic security, 126
Siegenthaler’s inequality, 71
Simmons’bound, 85
steady-state distribution, 118
stochastic equivalence assumption, 117
strong collision resistance, 140
superposition principle, 38

uniform distribution in the sense of
Weyl, 113

Vernam cipher, 12

Walsh transform, 70
weight of a subset of Bn, 53
Williams algorithm, 17

Xuao-Massey spectral test, 70

	Frontmatter
	Introduction
	1 Classical Polyalphabetic Substitution Ciphers
	2 RSA and Probabilistic Prime Number Tests
	3 Factorization with Quantum Computers: Shor's Algorithm
	4 Physical Random-Number Generators
	5 Pseudo-random Number Generators
	6 An Information Theory Primer
	7 Tests for (Pseudo-)Random Number Generators
	8 Diffie-Hellman Key Exchange
	9 Differential Cryptanalysis
	10 Semantic Security
	11 *Algorithmic Complexity
	12 Birthday Paradox and Meet-in-the-Middle Attack
	13 Quantum Cryptography
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

